<< Chapter < Page Chapter >> Page >
This collection reviews fundamental concepts underlying the use of concise models for signal processing. Topics are presented from a geometric perspective and include low-dimensional linear, sparse, and manifold-based signal models, approximation, compression, dimensionality reduction, and Compressed Sensing.

Overview

In characterizing a given problem in signal processing, one is often able to specify a model for the signals to be processed. This model may distinguish (either statistically or deterministically)classes of interesting signals from uninteresting ones, typical signals from anomalies, information from noise, etc.

Very commonly, models in signal processing deal with some notion of structure, constraint, or conciseness. Roughly speaking, one often believes that a signal has “few degrees of freedom”relative to the size of the signal. This notion of conciseness is a very powerful assumption, and it suggests the potential for dramatic gains via algorithms that capture and exploit the true underlyingstructure of the signal.

In these modules, we survey three common examples of concise models: linear models, sparse nonlinear models, and manifold-based models. In each case, we discuss an important phenomenon:the conciseness of the model corresponds to a low-dimensional geometric structure along which the signals of interest tend to cluster. This low-dimensional geometry again has important implicationsin the understanding and the development of efficient algorithms for signal processing.

We discuss this low-dimensional geometry in several contexts, including projecting a signal onto the model class (i.e., forming a concise approximation to a signal), encoding such an approximation(i.e., data compression), and reducing the dimensionality of signals and data sets. We conclude with an important and emerging application area known as Compressed Sensing (CS), which is a novel methodfor data acquisition that relies on concise models and builds upon strong geometric principles. We discuss CS in its traditional, sparsity-based context and also discuss extensions of CS to otherconcise models such as manifolds.

General mathematical preliminaries

Signal notation

We will treat signals as real- or complex-valued functions having domains that are either discrete (and finite) or continuous (andeither compact or infinite). Each of these assumptions will be made clear as needed. As a generalrule, however, we will use x to denote a discrete signal in R N and f to denote a function over a continuousdomain D . We also commonly refer to these as discrete- or continuous- time signals, though the domain need not actually be temporal in nature.

Lp and lp norms

As measures for signal energy, fidelity, or sparsity, we will employ the L p and p norms. For continuous-time functions, the L p norm is defined as

f L p ( D ) = D | f | p 1 / p , p ( 0 , ) ,
and for discrete-time functions, the p norm is defined as
x p = ( i = 1 N | x ( i ) | p ) 1 / p , p ( 0 , ) , max i = 1 , , N | x ( i ) | , p = , i = 1 N 1 x ( i ) 0 , p = 0 ,
where 1 denotes the indicator function. (While we often refer to these measures as “norms,” they actually do not meetthe technical criteria for norms when p < 1 .)

Linear algebra

Let A be a real-valued M × N matrix. We denote the nullspace of A as N ( A ) (note that N ( A ) is a linear subspace of R N ), and we denote the transpose of A as A T .

We call A an orthoprojector from R N to R M if it has orthonormal rows. From such a matrix we call A T A the corresponding orthogonal projection operator onto the M -dimensional subspace of R N spanned by the rows of A .

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concise signal models. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col10635/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concise signal models' conversation and receive update notifications?

Ask