<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the various types of body plans that occur in animals
  • Describe limits on animal size and shape
  • Relate bioenergetics to body size, levels of activity, and the environment

Animals vary in form and function. From a sponge to a worm to a goat, an organism has a distinct body plan that limits its size and shape. Animals’ bodies are also designed to interact with their environments, whether in the deep sea, a rainforest canopy, or the desert. Therefore, a large amount of information about the structure of an organism's body (anatomy) and the function of its cells, tissues and organs (physiology) can be learned by studying that organism's environment.

Body plans

Illustration A shows an asymmetrical sponge with a tube-like body and a growth off to one side. Illustration B shows a sea anemone with a tube-like, radial symmetrical body. Tentacles grow from the top of the tube. Three vertical planes arranged 120 degrees apart dissect the body. The half of the body on one side of each plane is a mirror image of the body on the other side. Illustration C shows a goat with a bilaterally symmetrical body. A plane runs from front to back through the middle of the goat, dissecting the body into left and right halves, which are mirror images of each other. The top part of the goat is defined as dorsal, and the bottom part is defined as ventral. The front of the goat is defined as anterior, and the back is defined as posterior.
Animals exhibit different types of body symmetry. The sponge is asymmetrical, the sea anemone has radial symmetry, and the goat has bilateral symmetry.

Animal body plans follow set patterns related to symmetry. They are asymmetrical, radial, or bilateral in form as illustrated in [link] . Asymmetrical animals are animals with no pattern or symmetry; an example of an asymmetrical animal is a sponge. Radial symmetry, as illustrated in [link] , describes when an animal has an up-and-down orientation: any plane cut along its longitudinal axis through the organism produces equal halves, but not a definite right or left side. This plan is found mostly in aquatic animals, especially organisms that attach themselves to a base, like a rock or a boat, and extract their food from the surrounding water as it flows around the organism. Bilateral symmetry is illustrated in the same figure by a goat. The goat also has an upper and lower component to it, but a plane cut from front to back separates the animal into definite right and left sides. Additional terms used when describing positions in the body are anterior (front), posterior (rear), dorsal (toward the back), and ventral (toward the stomach). Bilateral symmetry is found in both land-based and aquatic animals; it enables a high level of mobility.

Limits on animal size and shape

Animals with bilateral symmetry that live in water tend to have a fusiform    shape: this is a tubular shaped body that is tapered at both ends. This shape decreases the drag on the body as it moves through water and allows the animal to swim at high speeds. [link] lists the maximum speed of various animals. Certain types of sharks can swim at fifty kilometers an hour and some dolphins at 32 to 40 kilometers per hour. Land animals frequently travel faster, although the tortoise and snail are significantly slower than cheetahs. Another difference in the adaptations of aquatic and land-dwelling organisms is that aquatic organisms are constrained in shape by the forces of drag in the water since water has higher viscosity than air. On the other hand, land-dwelling organisms are constrained mainly by gravity, and drag is relatively unimportant. For example, most adaptations in birds are for gravity not for drag.

Maximum Speed of Assorted Land Marine Animals
Animal Speed (kmh) Speed (mph)
Cheetah 113 70
Quarter horse 77 48
Fox 68 42
Shortfin mako shark 50 31
Domestic house cat 48 30
Human 45 28
Dolphin 32–40 20–25
Mouse 13 8
Snail 0.05 0.03

Questions & Answers

describe the anatomy of cell division
Ivanovic Reply
Complex traits such as height result from 
Ruben Reply
what is the difference between chloroplasts and mitochondria
Nkalubo Reply
chloroplast in plants and bacterial cell ; mitochondria in animal cells
aung
Diagram of a living cell
Eliza Reply
what is cell
Sule
A cell is the smallest basic unit of life.
John
what's biology
Ogochukwu Reply
this is da study of living and non-living thing in an eco-system
Nutty
it is the study of living and non living organism in the ecology
Akufia
I agree with you dat biology is d study of living nd nonliving features
Winner
why do plants store carbohydrates in form of starch and not glucose?
Nutty Reply
Describe the structure of starch?
Nutty
wat is diffusion
Winner
water is life!.. Discuss?
Nutty Reply
why do plants store carbohydrates in form if starch not glucose!
Nutty
study of living thing
Dennis Reply
what is beyond a liveing cell
Raymond
what is biology
Gabriel Reply
d study of living nd non living thing
Winner
what is vasectomy
Evelyn Reply
The surgical removal of d spermduct
Eniola
What is Staining?
Fazal Reply
what is biology
PEACE Reply
Biology is the study of life
Tijani
what is biology
Ysabella Reply
biology is a study of living things
PEACE
Biology is a diverse branch of science that deals with mostly living things
Emmanuel
yes
Swapnil
What happen when inhibit the transcription?
Swapnil
what is the effect of not doing sexual intercourse
SUZAN Reply
what is the mechanism of cellular respiration
Rita Reply

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask