<< Chapter < Page Chapter >> Page >

Maak baie seker dat die leerders nie die voorste getal van ‘n aftrekbewerking herbenoem nie. ( Dit is die rede waarom hulle later probleme ondervind as hulle ‘n bewerking waar ‘n groep van 10 ontbind moet word, kry. )

Voorbeeld: 76 - 12 = ______

Probeer dit!

Gooi 76 tellers, wat in tiene en ene gegroepeer is, in ‘n plastieksak.

Laat ‘n leerder nou 2 kom uithaal.

Vra : Hoeveel is in die sak oor? 74

Wat is gedoen? ( 2 ene is uitgehaal) Skryf : 76 - 2 = 74

Laat ‘n ander leerder nou die 10 kom uithaal.

Vra : Wat is nou oor in die sak? 64

Wat is gedoen? ( 1 tien is uitgehaal) Skryf : 74 - 10 = 64

Om te toets, word eers 10 en dan 2 weer terug in die sak gegooi. Nou is daar weer 76 .

Onthou : Alle bewerkings word nog sonder oordrag of ontbinding van ‘n tien gedoen.

Leerders kan horisontaal of vertikaal werk. Dit is hulle keuse.

Help die leerders net om aan die gang te kom met die ontsyfering van die geheime kode. Hulle moet net begryp dat elke teken ‘n letter van die alfabet voorstel. Los hulle dan om self te probeer.

Moedig almal aan om iets met die kode te skryf, al is dit net hul eie naam.

Dit is ook ‘n geleentheid om uit te vind wie reeds die alfabet ken. Dalk kan dit sommer dien as aansporing om dit te leer.

Leerders afdeling

Inhoud

Aktiwiteit: syferpad [lu 1.1, lu 1.6, lu 1.3, lu 1.4, lu 1.10]

  • Hier is die syferpad wat Bonnie en Tommie loop tot by die skool. Volg die pad en vul die getalle in wat weggelaat is.
  • Bonnie en Tommie het geld gebring om lekkers te koop. Kom ons tel die geld in hulle beursies.

Bonnie het ____________________ c.

Tommie het ____________________ c.

________________________ het meer geld as _________________________

Sy het _____________________________c meer as hy.

  • Bonnie koop lekkers vir 20c. Nou het sy nog ......................... c oor.
  • Tommie koop lekkers vir 10c. Nou het hy nog ......................... c oor.
  • Hulle gooi hulle geld bymekaar. Nou het hulle ......................... c altesaam.
  • Hoeveel tiensentstukke het hulle? ......................... .Teken dit. ('n Sirkel met 10c daarin geskryf, is goed genoeg.)
LU 1.1 LU 1.6
  • Flinkdink!
Maak Bonnie se getalle: Maak Tommie se getalle:
1 meer 2 meer 1 minder 2 minder
8 + 1 = .............. 3 + 2 = .............. 7 - 1 = .............. 6 - 2 = ..............
6 + 1 = .............. 7 + 2 = .............. 9 - 1 = .............. 8 - 2 = ..............
2 + 1 = .............. 1 + 2 = .............. 5 - 1 = .............. 4 - 2 = ..............
4 + 1 = .............. 5 + 2 = .............. 6 - 1 = .............. 9 - 2 = ..............
7 + 1 = .............. 4 + 2 = .............. 3 - 1 = .............. 5 - 2 = ..............
3 + 1 = .............. 2 + 2 = .............. 8 - 1 = .............. 3 - 2 = ..............
5 + 1 = .............. 6 + 2 = .............. 4 - 1 = .............. 7 - 2 = ..............
  • Mamma gee vir Bonnie en Tommie elkeen 4 wortels . Teken elkeen se wortels in sy kosblik en voltooi die getalsinne.
  • Getalsinne:
4 + 4 = ......................... 2 viere is ......................... 2 x 4 = .........................
3 + 3 = ......................... 2 drieë is ......................... 2 x 3 = .........................
5 + 5 = ......................... 2 vywe is ......................... 2 x 5 = .........................
2 + 2 = ......................... 2 tweë is ......................... 2 x 2 = .........................
10 + 10 = ......................... 2 tiene is ......................... 2 x 10 = .........................
20 + 20 = ......................... 2 twintigs is ...................... 2 x 20 = .........................
  • Kopkrap!

Bonnie sê: Alle rigtings = 9 Tommie sê: Alle rigtings =12

2 3 4 5
4 3 4
4
LU 1.1 LU 1.10
1 ____ 3 ____ ____ ____ ____ ____ ____ 10
____ 12 ____ ____ ____ ____ ____ ____ ____ ____
____ ____ ____ ____ ____ ____ 27 ____ ____ 30
31 ____ ____ ____ ____ ____ ____ ____ ____ ____
____ ____ ____ 44 ____ ____ ____ ____ ____ 50
  • Soek Bonnie se getalle en vul hulle op die getalleblok in.

sewe; negentien; twee en twintig; vyf en dertig;

nege en veertig; veertien; drie en dertig;

sestien; een en veertig; ag en twintig

  • Tommie se getalle is op die getalleblok ingevul. Help hom om die getal en die getalnaam te skryf, bv. 1 : een

3 : ___________________________

_ _ : ___________________________

_ _ : ___________________________

_ _ : ___________________________

10 : ___________________________

_ _ : ___________________________

_ _ : ___________________________

_ _ : ___________________________

  • Bonnie moet die getalle van die kleinste tot die grootste sorteer en skryf:

5; 40; 18; 36; 29; 45; 33

____ ____ ____ ____ ____ ____ ____

  • Tommie moet syne van die grootste tot die kleinste sorteer en skryf.

46; 26; 13; 24; 1 1; 43 34

____ ____ ____ ____ ____ ____ ____

LU 1.3 LU 1.4
  • Tommie kruip vir Bonnie weg. Help haar om hom te soek. Tel elke keer 3 by en volg die syferpad.

Hoera! Hier is Tommie!

  • Help nou weer vir Bonnie om die pad terug huis toe te kry.

Bonnie en Tommie werk met die rekenaar. Hulle voer getalle in die rekenaar in. Wat kom uit?

  • Voltooi:
  • Daar staan 5 driewiele in die winkel. Hoeveel wiele sien jy?
  • __________ wiele. Teken die wiele soos vir elke driewiel.
LU 1.1

Assessering

Leeruitkomste 1: Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.1: Dit is duidelik wanneer die leerder aan en terug tel in:

1.1.1 die intervalle aangedui vir graad 2 met toenemende getalomvang;

Assesseringstandaard 1.3: Dit is duidelik wanneer die leerder ken, lees en skryf getalsimbole en -name van 1 tot minstens 1 000;

Assesseringstandaard 1.6: Dit is duidelik wanneer die leerder geldprobleme oplos wat totale en kleingeld in rand en sent behels, insluitend herleiding tussen rand en sent;

Assesseringstandaard 1.10: Dit is duidelik wanneer die leerder die volgende tegnieke gebruik:

1.10.1 opbou en afbreek van getalle;

1.10.2 verdubbeling en halvering;

1.10.3 getallelyne;

1.10.4 afronding in tiene.

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 3. OpenStax CNX. Oct 14, 2009 Download for free at http://cnx.org/content/col11129/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 3' conversation and receive update notifications?

Ask