<< Chapter < Page Chapter >> Page >
Photo (a) shows a plant with many fuzzy white hairs growing from its surface. Scanning electron micrograph (b) shows branched tree-like hairs emerging from the surface of a leaf. The trunk of each hair is about 250 microns tall. Branches are somewhat shorter. Scanning electron micrograph (c) shows many multi-pronged hairs about 100 microns long that look like sea anemones scattered across a leaf surface.
Trichomes give leaves a fuzzy appearance as in this (a) sundew ( Drosera sp.). Leaf trichomes include (b) branched trichomes on the leaf of Arabidopsis lyrata and (c) multibranched trichomes on a mature Quercus marilandica leaf. (credit a: John Freeland; credit b, c: modification of work by Robert R. Wise; scale-bar data from Matt Russell)

Below the epidermis of dicot leaves are layers of cells known as the mesophyll, or “middle leaf.” The mesophyll of most leaves typically contains two arrangements of parenchyma cells: the palisade parenchyma and spongy parenchyma ( [link] ). The palisade parenchyma (also called the palisade mesophyll) has column-shaped, tightly packed cells, and may be present in one, two, or three layers. Below the palisade parenchyma are loosely arranged cells of an irregular shape. These are the cells of the spongy parenchyma (or spongy mesophyll). The air space found between the spongy parenchyma cells allows gaseous exchange between the leaf and the outside atmosphere through the stomata. In aquatic plants, the intercellular spaces in the spongy parenchyma help the leaf float. Both layers of the mesophyll contain many chloroplasts. Guard cells are the only epidermal cells to contain chloroplasts.

 Part A is a leaf cross section illustration. A flat layer of rectangular cells make up the upper and lower epidermis. A cuticle layer protects the outside of both epidermal layers. A stomatal pore in the lower epidermis allows carbon dioxide to enter and oxygen to leave. Oval guard cells surround the pore. Sandwiched between the upper and lower epidermis is the mesophyll. The upper part of the mesophyll is comprised of columnar cells called palisade parenchyma. The lower part of the mesophyll is made up of loosely packed spongy parenchyma. Part B is a scanning electron micrograph of a leaf in which all the layers described above are visible. Palisade cells are about 50 microns tall and 10 microns wide and are covered with tiny bumps, which are the chloroplasts. Spongy cells smaller and irregularly shaped. Several large bumps about 20 microns across project from the lower surface of the leaf.
In the (a) leaf drawing, the central mesophyll is sandwiched between an upper and lower epidermis. The mesophyll has two layers: an upper palisade layer comprised of tightly packed, columnar cells, and a lower spongy layer, comprised of loosely packed, irregularly shaped cells. Stomata on the leaf underside allow gas exchange. A waxy cuticle covers all aerial surfaces of land plants to minimize water loss. These leaf layers are clearly visible in the (b) scanning electron micrograph. The numerous small bumps in the palisade parenchyma cells are chloroplasts. Chloroplasts are also present in the spongy parenchyma, but are not as obvious. The bumps protruding from the lower surface of the leave are glandular trichomes, which differ in structure from the stalked trichomes in [link] . (credit b: modification of work by Robert R. Wise)

Like the stem, the leaf contains vascular bundles composed of xylem and phloem ( [link] ). The xylem consists of tracheids and vessels, which transport water and minerals to the leaves. The phloem transports the photosynthetic products from the leaf to the other parts of the plant. A single vascular bundle, no matter how large or small, always contains both xylem and phloem tissues.

 The scanning electron micrograph shows an oval vascular bundle. Small phloem cells make up the bottom of the bundle, and larger xylem cells make up the top. The bundle is surrounded by a ring of larger cells.
This scanning electron micrograph shows xylem and phloem in the leaf vascular bundle from the lyre-leaved sand cress ( Arabidopsis lyrata) . (credit: modification of work by Robert R. Wise; scale-bar data from Matt Russell)

Leaf adaptations

Coniferous plant species that thrive in cold environments, like spruce, fir, and pine, have leaves that are reduced in size and needle-like in appearance. These needle-like leaves have sunken stomata and a smaller surface area: two attributes that aid in reducing water loss. In hot climates, plants such as cacti have leaves that are reduced to spines, which in combination with their succulent stems, help to conserve water. Many aquatic plants have leaves with wide lamina that can float on the surface of the water, and a thick waxy cuticle on the leaf surface that repels water.

Questions & Answers

differences between euglenoid and amoeboid
Grace Reply
what are the difference between aerobic and anaerobic respiration?
Maxwell Reply
Aerobic respiration involves the use of oxygen whiles anaerobic respiration does not involve the use of oxygen
Quabena
what is assmilation
Lucy Reply
what is cell
Manish Reply
cell is the structural and functional unit of life or living things
hamid
where anaerobic respiration occurre?
Manish
in cell
Manish
in cells?
Manish
where anaerobic respiration occurre in cell?
Manish
what's phloem?
Gift Reply
what is different between Latin name and common names
mary Reply
hey
Gift
what's enzyme
Gift
what structure help root hair cells to take up water.
Jackson Reply
which two part of a plant cell are affected when the is immersed in sucrose solution?
Jackson
which two part of a plant cell are affected when the is immersed in sucrose solution?
Jackson
the xylem cells absorbs water and mineral salt from the soil to all part of the plant.
Nana
And the phloem cell take up food prepared from the leaves to all part of the plant
Nana
what is genetic engineering
Mavis Reply
what are the three main type of ecosystem
Mavis
biosphere,
Bigenis
biosphere
Adeniyi
where anaerobic respiration occur?
Manish
what is mitochondria
Might Reply
please what's genetics erngee
Abanke Reply
what is genetic engineering
Eveline Reply
what is the meaning of term mitosis
Lwitiko Reply
outline the significance of mitosis to organisms
Lwitiko
significant of meiosis are to increase in variation and leads to the formation of haploid gamete
Eveline
thanks
Abanke
name the resources to be conserved
Oreva Reply
define natural resources
Oreva
name the agencies responsible for the conservation of natural resources
Oreva
land,water,forests,
Kiiza
nema,uwa
Kiiza
wassup guyz
Peace
land ,water
Erika
Good Land and Water
garnhial
food, fish, livelihoods,forest, land and water
garnhial
explain the importance of carbon dioxide in the body
Kiiza Reply
how does that works
SAMUEL
diagram of Prokaryotic cells
Magreth Reply
where is it?
Yazi
ʜɪ
Malikie
ʜɪ
Malikie
where is the diagram?
Yazi
waiting.....
Yazi
what
Malikie
good morning guyz
Joelia
gd morning
Hannalyn
morning how are u doing
Paul
doing all fyn en u
Joelia
👍👍👍
Gruxz
morning everyone.. by is Grace we have be saved... Ephesians 2:8....
Cosmo
hi
Kisa
hey guys am new
Ellie
u a most wlcm
Joelia
🍑🐕
Ken
Hello guys im new
Sulaiman
u are welcome
Peace
thanks
Ellie
..amitabatha..
Ken
He guys happy New month
Peace
hello everyone,I'm new here!!
Reine
welcome
James
thanks so much!!
Reine
how re u Reine Balla
James
Happy New mnth to guys
Peace
HAPPY new month to u
James
Thanks and same to u
Peace
welcome one more peace
James
hi guys
Tafadzwa
Define the term Biology element atom
James
my name is rons am asking the question what is blood compatibility
Rons
Do you really no the one you text with.
Israel
I'm fine James, just boredom want to finish me!!
Reine

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask