# 3.1 Vector-valued functions and space curves  (Page 4/12)

 Page 4 / 12

Calculate $\underset{t\to -2}{\text{lim}}\phantom{\rule{0.1em}{0ex}}\text{r}\left(t\right)$ for the function $\text{r}\left(t\right)=\sqrt{{t}^{2}-3t-1}\phantom{\rule{0.1em}{0ex}}\text{i}+\left(4t+3\right)\phantom{\rule{0.1em}{0ex}}\text{j}+\text{sin}\phantom{\rule{0.2em}{0ex}}\frac{\left(t+1\right)\pi }{2}\phantom{\rule{0.1em}{0ex}}\text{k}.$

$\underset{t\to -2}{\text{lim}}\phantom{\rule{0.1em}{0ex}}\text{r}\left(t\right)=3\phantom{\rule{0.1em}{0ex}}\text{i}-5\phantom{\rule{0.1em}{0ex}}\text{j}-\text{k}$

Now that we know how to calculate the limit of a vector-valued function, we can define continuity at a point for such a function.

## Definition

Let f, g, and h be functions of t. Then, the vector-valued function $\text{r}\left(t\right)=f\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{i}+g\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{j}$ is continuous at point $t=a$ if the following three conditions hold:

1. $\text{r}\left(a\right)$ exists
2. $\underset{t\to a}{\text{lim}}\phantom{\rule{0.1em}{0ex}}\text{r}\left(t\right)$ exists
3. $\underset{t\to a}{\text{lim}}\phantom{\rule{0.1em}{0ex}}\text{r}\left(t\right)=\text{r}\left(a\right)$

Similarly, the vector-valued function $\text{r}\left(t\right)=f\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{i}+g\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{j}+h\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{k}$ is continuous at point $t=a$ if the following three conditions hold:

1. $\text{r}\left(a\right)$ exists
2. $\underset{t\to a}{\text{lim}}\phantom{\rule{0.1em}{0ex}}\text{r}\left(t\right)$ exists
3. $\underset{t\to a}{\text{lim}}\phantom{\rule{0.1em}{0ex}}\text{r}\left(t\right)=\text{r}\left(a\right)$

## Key concepts

• A vector-valued function is a function of the form $\text{r}\left(t\right)=f\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{i}+g\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{j}$ or $\text{r}\left(t\right)=f\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{i}+g\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{j}+h\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{k},$ where the component functions f, g, and h are real-valued functions of the parameter t .
• The graph of a vector-valued function of the form $\text{r}\left(t\right)=f\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{i}+g\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{j}$ is called a plane curve . The graph of a vector-valued function of the form $\text{r}\left(t\right)=f\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{i}+g\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{j}+h\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{k}$ is called a space curve .
• It is possible to represent an arbitrary plane curve by a vector-valued function.
• To calculate the limit of a vector-valued function, calculate the limits of the component functions separately.

## Key equations

• Vector-valued function
$\text{r}\left(t\right)=f\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{i}+g\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{j}\phantom{\rule{0.5em}{0ex}}\text{or}\phantom{\rule{0.5em}{0ex}}\text{r}\left(t\right)=f\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{i}+g\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{j}+h\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{k},\phantom{\rule{0.2em}{0ex}}\text{or}\phantom{\rule{0.5em}{0ex}}\text{r}\left(t\right)=⟨f\left(t\right),g\left(t\right)⟩\phantom{\rule{0.2em}{0ex}}\text{or}\phantom{\rule{0.5em}{0ex}}\text{r}\left(t\right)=⟨f\left(t\right),g\left(t\right),h\left(t\right)⟩$
• Limit of a vector-valued function
$\underset{t\to a}{\text{lim}}\phantom{\rule{0.1em}{0ex}}\text{r}\left(t\right)=\left[\underset{t\to a}{\text{lim}}f\left(t\right)\right]\phantom{\rule{0.1em}{0ex}}\text{i}+\left[\underset{t\to a}{\text{lim}}g\left(t\right)\right]\phantom{\rule{0.1em}{0ex}}\text{j}\phantom{\rule{0.2em}{0ex}}\text{or}\phantom{\rule{0.2em}{0ex}}\underset{t\to a}{\text{lim}}\phantom{\rule{0.1em}{0ex}}\text{r}\left(t\right)=\left[\underset{t\to a}{\text{lim}}f\left(t\right)\right]\phantom{\rule{0.1em}{0ex}}\text{i}+\left[\underset{t\to a}{\text{lim}}g\left(t\right)\right]\phantom{\rule{0.1em}{0ex}}\text{j}+\left[\underset{t\to a}{\text{lim}}h\left(t\right)\right]\phantom{\rule{0.1em}{0ex}}\text{k}$

Give the component functions $x=f\left(t\right)$ and $y=g\left(t\right)$ for the vector-valued function $\text{r}\left(t\right)=3\phantom{\rule{0.1em}{0ex}}\text{sec}\phantom{\rule{0.1em}{0ex}}t\phantom{\rule{0.1em}{0ex}}\text{i}+2\phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}t\phantom{\rule{0.1em}{0ex}}\text{j}.$

$f\left(t\right)=3\phantom{\rule{0.1em}{0ex}}\text{sec}\phantom{\rule{0.1em}{0ex}}t,g\left(t\right)=2\phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}t$

Given $\text{r}\left(t\right)=3\phantom{\rule{0.1em}{0ex}}\text{sec}\phantom{\rule{0.1em}{0ex}}t\phantom{\rule{0.1em}{0ex}}\text{i}+2\phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}t\phantom{\rule{0.1em}{0ex}}\text{j},$ find the following values (if possible).

1. $\text{r}\left(\frac{\pi }{4}\right)$
2. $\text{r}\left(\pi \right)$
3. $\text{r}\left(\frac{\pi }{2}\right)$

Sketch the curve of the vector-valued function $\text{r}\left(t\right)=3\phantom{\rule{0.1em}{0ex}}\text{sec}\phantom{\rule{0.1em}{0ex}}t\phantom{\rule{0.1em}{0ex}}\text{i}+2\phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}t\phantom{\rule{0.1em}{0ex}}\text{j}$ and give the orientation of the curve. Sketch asymptotes as a guide to the graph. Evaluate $\underset{t\to 0}{\text{lim}}⟨{e}^{t}\phantom{\rule{0.1em}{0ex}}\text{i}+\frac{\text{sin}\phantom{\rule{0.1em}{0ex}}t}{t}\phantom{\rule{0.1em}{0ex}}\text{j}+{e}^{\text{−}t}\phantom{\rule{0.1em}{0ex}}\text{k}⟩.$

Given the vector-valued function $\text{r}\left(t\right)=⟨\text{cos}\phantom{\rule{0.1em}{0ex}}t,\text{sin}\phantom{\rule{0.1em}{0ex}}t⟩,$ find the following values:

1. $\underset{t\to \frac{\pi }{4}}{\text{lim}}\phantom{\rule{0.1em}{0ex}}\text{r}\left(t\right)$
2. $\text{r}\left(\frac{\pi }{3}\right)$
3. Is $\text{r}\left(t\right)$ continuous at $t=\frac{\pi }{3}?$
4. Graph $\text{r}\left(t\right).$

a. $⟨\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}⟩,$ b. $⟨\frac{1}{2},\frac{\sqrt{3}}{2}⟩,$ c. Yes, the limit as t approaches $\pi \text{/}3$ is equal to $\text{r}\left(\pi \text{/}3\right),$ d. Given the vector-valued function $\text{r}\left(t\right)=⟨t,{t}^{2}+1⟩,$ find the following values:

1. $\underset{t\to -3}{\text{lim}}\phantom{\rule{0.1em}{0ex}}\text{r}\left(t\right)$
2. $\text{r}\left(-3\right)$
3. Is $\text{r}\left(t\right)$ continuous at $x=-3?$
4. $\text{r}\left(t+2\right)-\text{r}\left(t\right)$

Let $\text{r}\left(t\right)={e}^{t}\phantom{\rule{0.1em}{0ex}}\text{i}+\text{sin}\phantom{\rule{0.1em}{0ex}}t\phantom{\rule{0.1em}{0ex}}\text{j}+\text{ln}\phantom{\rule{0.1em}{0ex}}t\phantom{\rule{0.1em}{0ex}}\text{k}.$ Find the following values:

1. $\text{r}\left(\frac{\pi }{4}\right)$
2. $\underset{t\to \pi \text{/}4}{\text{lim}}\phantom{\rule{0.1em}{0ex}}\text{r}\left(t\right)$
3. Is $\text{r}\left(t\right)$ continuous at $t=t=\frac{\pi }{4}?$

a. $⟨{e}^{\pi \text{/}4},\frac{\sqrt{2}}{2},\text{ln}\left(\frac{\pi }{4}\right)⟩;$ b. $⟨{e}^{\pi \text{/}4},\frac{\sqrt{2}}{2},\text{ln}\left(\frac{\pi }{4}\right)⟩;$ c. Yes

Find the limit of the following vector-valued functions at the indicated value of t .

$\underset{t\to 4}{\text{lim}}⟨\sqrt{t-3},\frac{\sqrt{t}-2}{t-4},\text{tan}\left(\frac{\pi }{t}\right)⟩$

$\underset{t\to \pi \text{/}2}{\text{lim}}\phantom{\rule{0.1em}{0ex}}\text{r}\left(t\right)$ for $\text{r}\left(t\right)={e}^{t}\phantom{\rule{0.1em}{0ex}}\text{i}+\text{sin}\phantom{\rule{0.1em}{0ex}}t\phantom{\rule{0.1em}{0ex}}\text{j}+\text{ln}\phantom{\rule{0.1em}{0ex}}t\phantom{\rule{0.1em}{0ex}}\text{k}$

$⟨{e}^{\pi \text{/}2},1,\text{ln}\left(\frac{\pi }{2}\right)⟩$

$\underset{t\to \infty }{\text{lim}}⟨{e}^{-2t},\frac{2t+3}{3t-1},\text{arctan}\left(2t\right)⟩$

$\underset{t\to {e}^{2}}{\text{lim}}⟨t\phantom{\rule{0.1em}{0ex}}\text{ln}\left(t\right),\frac{\text{ln}\phantom{\rule{0.1em}{0ex}}t}{{t}^{2}},\sqrt{\text{ln}\phantom{\rule{0.1em}{0ex}}\left({t}^{2}\right)}⟩$

$2{e}^{2}\phantom{\rule{0.1em}{0ex}}\text{i}+\frac{2}{{e}^{4}}\phantom{\rule{0.1em}{0ex}}\text{j}+2\phantom{\rule{0.1em}{0ex}}\text{k}$

$\underset{t\to \pi \text{/}6}{\text{lim}}⟨{\text{cos}}^{2}t,{\text{sin}}^{2}t,1⟩$

$\underset{t\to \infty }{\text{lim}}\phantom{\rule{0.1em}{0ex}}\text{r}\left(t\right)$ for $\text{r}\left(t\right)=2{e}^{\text{−}t}\phantom{\rule{0.1em}{0ex}}\text{i}+{e}^{\text{−}t}\phantom{\rule{0.1em}{0ex}}\text{j}+\text{ln}\left(t-1\right)\phantom{\rule{0.1em}{0ex}}\text{k}$

The limit does not exist because the limit of $\text{ln}\left(t-1\right)$ as t approaches infinity does not exist.

Describe the curve defined by the vector-valued function $\text{r}\left(t\right)=\left(1+t\right)\phantom{\rule{0.1em}{0ex}}\text{i}+\left(2+5t\right)\phantom{\rule{0.1em}{0ex}}\text{j}+\left(-1+6t\right)\phantom{\rule{0.1em}{0ex}}\text{k}.$

Find the domain of the vector-valued functions.

Domain: $\text{r}\left(t\right)=⟨{t}^{2},\text{tan}\phantom{\rule{0.1em}{0ex}}t,\text{ln}\phantom{\rule{0.1em}{0ex}}t⟩$

$t>0,t\ne \left(2k+1\right)\frac{\pi }{2},$ where k is an integer

Domain: $\text{r}\left(t\right)=⟨{t}^{2},\sqrt{t-3},\frac{3}{2t+1}⟩$

Domain: $\text{r}\left(t\right)=⟨\text{csc}\left(t\right),\frac{1}{\sqrt{t-3}},\text{ln}\left(t-2\right)⟩$

$t>3,t\ne n\pi ,$ where n is an integer

Let $\text{r}\left(t\right)=⟨\text{cos}\phantom{\rule{0.1em}{0ex}}t,t,\text{sin}\phantom{\rule{0.1em}{0ex}}t⟩$ and use it to answer the following questions.

For what values of t is $\text{r}\left(t\right)$ continuous?

Sketch the graph of $\text{r}\left(t\right).$ Find the domain of $\text{r}\left(t\right)=2{e}^{\text{−}t}\phantom{\rule{0.1em}{0ex}}\text{i}+{e}^{\text{−}t}\phantom{\rule{0.1em}{0ex}}\text{j}+\text{ln}\left(t-1\right)\phantom{\rule{0.1em}{0ex}}\text{k}.$

For what values of t is $\text{r}\left(t\right)=2{e}^{\text{−}t}\phantom{\rule{0.1em}{0ex}}\text{i}+{e}^{\text{−}t}\phantom{\rule{0.1em}{0ex}}\text{j}+\text{ln}\left(t-1\right)\phantom{\rule{0.1em}{0ex}}\text{k}$ continuous?

All t such that $t\in \left(1,\infty \right)$

Eliminate the parameter t , write the equation in Cartesian coordinates, then sketch the graphs of the vector-valued functions. ( Hint: Let $x=2t$ and $y={t}^{2}.$ Solve the first equation for x in terms of t and substitute this result into the second equation.)

$\text{r}\left(t\right)=2t\phantom{\rule{0.1em}{0ex}}\text{i}+{t}^{2}\phantom{\rule{0.1em}{0ex}}\text{j}$

$\text{r}\left(t\right)={t}^{3}\phantom{\rule{0.1em}{0ex}}\text{i}+2t\phantom{\rule{0.1em}{0ex}}\text{j}$

$y=2\sqrt{x},$ a variation of the cube-root function $\text{r}\left(t\right)=2\left(\text{sinh}\phantom{\rule{0.1em}{0ex}}t\right)\phantom{\rule{0.1em}{0ex}}\text{i}+2\left(\text{cosh}\phantom{\rule{0.1em}{0ex}}t\right)\phantom{\rule{0.1em}{0ex}}\text{j},t>0$

$\text{r}\left(t\right)=3\left(\text{cos}\phantom{\rule{0.1em}{0ex}}t\right)\phantom{\rule{0.1em}{0ex}}\text{i}+3\left(\text{sin}\phantom{\rule{0.1em}{0ex}}t\right)\phantom{\rule{0.1em}{0ex}}\text{j}$

${x}^{2}+{y}^{2}=9,$ a circle centered at $\left(0,0\right)$ with radius 3, and a counterclockwise orientation $\text{r}\left(t\right)=⟨3\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}t,3\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}t⟩$

Use a graphing utility to sketch each of the following vector-valued functions:

[T] $\text{r}\left(t\right)=2\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}{t}^{2}\phantom{\rule{0.1em}{0ex}}\text{i}+\left(2-\sqrt{t}\right)\phantom{\rule{0.1em}{0ex}}\text{j}$ [T] $\text{r}\left(t\right)=⟨{e}^{\text{cos}\left(3t\right)},{e}^{\text{−}\text{sin}\left(t\right)}⟩$

[T] $\text{r}\left(t\right)=⟨2-\text{sin}\left(2t\right),3+2\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}t⟩$ Find a vector-valued function that traces out the given curve in the indicated direction.

$4{x}^{2}+9{y}^{2}=36;$ clockwise and counterclockwise

$\text{r}\left(t\right)=⟨t,{t}^{2}⟩;$ from left to right

For left to right, $y={x}^{2},$ where t increases

The line through P and Q where P is $\left(1,4,-2\right)$ and Q is $\left(3,9,6\right)$

Consider the curve described by the vector-valued function $\text{r}\left(t\right)=\left(50{e}^{\text{−}t}\text{cos}\phantom{\rule{0.1em}{0ex}}t\right)\phantom{\rule{0.1em}{0ex}}\text{i}+\left(50{e}^{\text{−}t}\text{sin}\phantom{\rule{0.1em}{0ex}}t\right)\phantom{\rule{0.1em}{0ex}}\text{j}+\left(5-5{e}^{\text{−}t}\right)\phantom{\rule{0.1em}{0ex}}\text{k}.$

What is the initial point of the path corresponding to $\text{r}\left(0\right)?$

$\left(50,0,0\right)$

What is $\underset{t\to \infty }{\text{lim}}\phantom{\rule{0.1em}{0ex}}\text{r}\left(t\right)?$

[T] Use technology to sketch the curve. Eliminate the parameter t to show that $z=5-\frac{r}{10}$ where $r={x}^{2}+{y}^{2}.$

[T] Let $r\left(t\right)=\text{cos}\phantom{\rule{0.1em}{0ex}}t\phantom{\rule{0.1em}{0ex}}\text{i}+\text{sin}\phantom{\rule{0.1em}{0ex}}t\phantom{\rule{0.1em}{0ex}}\text{j}+0.3\phantom{\rule{0.1em}{0ex}}\text{sin}\left(2t\right)\phantom{\rule{0.1em}{0ex}}\text{k}.$ Use technology to graph the curve (called the roller-coaster curve ) over the interval $\left[0,2\pi \right).$ Choose at least two views to determine the peaks and valleys. [T] Use the result of the preceding problem to construct an equation of a roller coaster with a steep drop from the peak and steep incline from the “valley.” Then, use technology to graph the equation.

Use the results of the preceding two problems to construct an equation of a path of a roller coaster with more than two turning points (peaks and valleys).

One possibility is $r\left(t\right)=\text{cos}\phantom{\rule{0.1em}{0ex}}t\phantom{\rule{0.1em}{0ex}}\text{i}+\text{sin}\phantom{\rule{0.1em}{0ex}}t\phantom{\rule{0.1em}{0ex}}\text{j}+\text{sin}\left(4t\right)\phantom{\rule{0.1em}{0ex}}\text{k}.$ By increasing the coefficient of t in the third component, the number of turning points will increase. 1. Graph the curve $\text{r}\left(t\right)=\left(4+\text{cos}\left(18t\right)\right)\text{cos}\left(t\right)\phantom{\rule{0.1em}{0ex}}\text{i}+\left(4+\text{cos}\left(18t\right)\text{sin}\left(t\right)\right)\phantom{\rule{0.1em}{0ex}}\text{j}+0.3\phantom{\rule{0.1em}{0ex}}\text{sin}\left(18t\right)\phantom{\rule{0.1em}{0ex}}\text{k}$ using two viewing angles of your choice to see the overall shape of the curve.
2. Does the curve resemble a “slinky”?
3. What changes to the equation should be made to increase the number of coils of the slinky?

How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!        By By Mistry Bhavesh 