# 11.1 Use the rectangular coordinate system  (Page 6/13)

 Page 6 / 13

Find three solutions to the equation: $2x+3y=6.$

Answers will vary.

Find three solutions to the equation: $4x+2y=8.$

Answers will vary.

Let’s find some solutions to another equation now.

Find three solutions to the equation $x-4y=8.$

## Solution   Choose a value for $x$ or $y.$   Substitute it into the equation.   Solve.   Write the ordered pair. $\left(0,-2\right)$ $\left(8,0\right)$ $\left(20,3\right)$

So $\left(0,-2\right),\left(8,0\right),$ and $\left(20,3\right)$ are three solutions to the equation $x-4y=8.$

$x-4y=8$
$x$ $y$ $\left(x,y\right)$
$0$ $-2$ $\left(0,-2\right)$
$8$ $0$ $\left(8,0\right)$
$20$ $3$ $\left(20,3\right)$

Remember, there are an infinite number of solutions to each linear equation. Any point you find is a solution if it makes the equation true.

Find three solutions to the equation: $4x+y=8.$

Answers will vary.

Find three solutions to the equation: $x+5y=10.$

Answers will vary.

## Key concepts

• Sign Patterns of the Quadrants
Quadrant I Quadrant II Quadrant III Quadrant IV
( x , y ) ( x , y ) ( x , y ) ( x , y )
(+,+) (−,+) (−,−) (+,−)
• Coordinates of Zero
• Points with a y- coordinate equal to 0 are on the x- axis, and have coordinates ( a , 0).
• Points with a x- coordinate equal to 0 are on the y- axis, and have coordinates ( 0, b ).
• The point (0, 0) is called the origin. It is the point where the x- axis and y- axis intersect.

## Practice makes perfect

Plot Points on a Rectangular Coordinate System

In the following exercises, plot each point on a coordinate grid.

$\left(3,2\right)$ $\left(4,1\right)$

$\left(1,5\right)$ $\left(3,4\right)$

$\left(4,1\right),\left(1,4\right)$ $\left(3,2\right),\left(2,3\right)$

$\left(3,4\right),\left(4,3\right)$ In the following exercises, plot each point on a coordinate grid and identify the quadrant in which the point is located.

1. $\phantom{\rule{0.2em}{0ex}}\left(-4,2\right)$
2. $\phantom{\rule{0.2em}{0ex}}\left(-1,-2\right)$
3. $\phantom{\rule{0.2em}{0ex}}\left(3,-5\right)$
4. $\phantom{\rule{0.2em}{0ex}}\left(2,\frac{5}{2}\right)$

1. $\phantom{\rule{0.2em}{0ex}}\left(-2,-3\right)$
2. $\phantom{\rule{0.2em}{0ex}}\left(3,-3\right)$
3. $\phantom{\rule{0.2em}{0ex}}\left(-4,1\right)$
4. $\phantom{\rule{0.2em}{0ex}}\left(1,\frac{3}{2}\right)$ 1. $\phantom{\rule{0.2em}{0ex}}\left(-1,1\right)$
2. $\phantom{\rule{0.2em}{0ex}}\left(-2,-1\right)$
3. $\phantom{\rule{0.2em}{0ex}}\left(1,-4\right)$
4. $\phantom{\rule{0.2em}{0ex}}\left(3,\frac{7}{2}\right)$

1. $\phantom{\rule{0.2em}{0ex}}\left(3,-2\right)$
2. $\phantom{\rule{0.2em}{0ex}}\left(-3,2\right)$
3. $\phantom{\rule{0.2em}{0ex}}\left(-3,-2\right)$
4. $\phantom{\rule{0.2em}{0ex}}\left(3,2\right)$ 1. $\phantom{\rule{0.2em}{0ex}}\left(4,-1\right)$
2. $\phantom{\rule{0.2em}{0ex}}\left(-4,1\right)$
3. $\phantom{\rule{0.2em}{0ex}}\left(-4,-1\right)$
4. $\phantom{\rule{0.2em}{0ex}}\left(4,1\right)$

1. $\phantom{\rule{0.2em}{0ex}}\left(-2,0\right)$
2. $\phantom{\rule{0.2em}{0ex}}\left(-3,0\right)$
3. $\phantom{\rule{0.2em}{0ex}}\left(0,4\right)$
4. $\phantom{\rule{0.2em}{0ex}}\left(0,2\right)$ Identify Points on a Graph

In the following exercises, name the ordered pair of each point shown.       Verify Solutions to an Equation in Two Variables

In the following exercises, determine which ordered pairs are solutions to the given equation.

$2x+y=6$

1. $\phantom{\rule{0.2em}{0ex}}\left(1,4\right)$
2. $\phantom{\rule{0.2em}{0ex}}\left(3,0\right)$
3. $\phantom{\rule{0.2em}{0ex}}\left(2,3\right)$

,

$x+3y=9$

1. $\phantom{\rule{0.2em}{0ex}}\left(0,3\right)$
2. $\phantom{\rule{0.2em}{0ex}}\left(6,1\right)$
3. $\phantom{\rule{0.2em}{0ex}}\left(-3,-3\right)$

$4x-2y=8$

1. $\phantom{\rule{0.2em}{0ex}}\left(3,2\right)$
2. $\phantom{\rule{0.2em}{0ex}}\left(1,4\right)$
3. $\phantom{\rule{0.2em}{0ex}}\left(0,-4\right)$

,

$3x-2y=12$

1. $\phantom{\rule{0.2em}{0ex}}\left(4,0\right)$
2. $\phantom{\rule{0.2em}{0ex}}\left(2,-3\right)$
3. $\phantom{\rule{0.2em}{0ex}}\left(1,6\right)$

$y=4x+3$

1. $\phantom{\rule{0.2em}{0ex}}\left(4,3\right)$
2. $\phantom{\rule{0.2em}{0ex}}\left(-1,-1\right)$
3. $\phantom{\rule{0.2em}{0ex}}\left(\frac{1}{2},5\right)$

,

$y=2x-5$

1. $\phantom{\rule{0.2em}{0ex}}\left(0,-5\right)$
2. $\phantom{\rule{0.2em}{0ex}}\left(2,1\right)$
3. $\phantom{\rule{0.2em}{0ex}}\left(\frac{1}{2},-4\right)$

$y=\frac{1}{2}x-1$

1. $\phantom{\rule{0.2em}{0ex}}\left(2,0\right)$
2. $\phantom{\rule{0.2em}{0ex}}\left(-6,-4\right)$
3. $\phantom{\rule{0.2em}{0ex}}\left(-4,-1\right)$

,

$y=\frac{1}{3}x+1$

1. $\phantom{\rule{0.2em}{0ex}}\left(-3,0\right)$
2. $\phantom{\rule{0.2em}{0ex}}\left(9,4\right)$
3. $\phantom{\rule{0.2em}{0ex}}\left(-6,-1\right)$

Find Solutions to Linear Equations in Two Variables

In the following exercises, complete the table to find solutions to each linear equation.

$y=2x-4$

$x$ $y$ $\left(x,y\right)$
$-1$
$0$
$2$
$x$ $y$ $\left(x,y\right)$
$-1$ $-6$ $\left(-1,-6\right)$
$0$ $-4$ $\left(0,-4\right)$
$2$ $0$ $\left(2,0\right)$

$y=3x-1$

$x$ $y$ $\left(x,y\right)$
$-1$
$0$
$2$

$y=-x+5$

$x$ $y$ $\left(x,y\right)$
$-2$
$0$
$3$
$x$ $y$ $\left(x,y\right)$
$-2$ $7$ $\left(-2,7\right)$
$0$ $5$ $\left(0,5\right)$
$3$ $2$ $\left(3,2\right)$

$y=\frac{1}{3}x+1$

$x$ $y$ $\left(x,y\right)$
$0$
$3$
$6$

$y=-\frac{3}{2}x-2$

$x$ $y$ $\left(x,y\right)$
$-2$
$0$
$2$
$x$ $y$ $\left(x,y\right)$
$-2$ $1$ $\left(-2,1\right)$
$0$ $-2$ $\left(0,-2\right)$
$2$ $-5$ $\left(2,-5\right)$

$x+2y=8$

$x$ $y$ $\left(x,y\right)$
$0$
$4$
$0$

## Everyday math

Weight of a baby Mackenzie recorded her baby’s weight every two months. The baby’s age, in months, and weight, in pounds, are listed in the table, and shown as an ordered pair in the third column.

Plot the points on a coordinate grid.

 $\text{Age}$ $\text{Weight}$ $\left(x,y\right)$ $0$ $7$ $\left(0,7\right)$ $2$ $11$ $\left(2,11\right)$ $4$ $15$ $\left(4,15\right)$ $6$ $16$ $\left(6,16\right)$ $8$ $19$ $\left(8,19\right)$ $10$ $20$ $\left(10,20\right)$ $12$ $21$ $\left(12,21\right)$

Why is only Quadrant I needed?

1. 2. Age and weight are only positive.

Weight of a child Latresha recorded her son’s height and weight every year. His height, in inches, and weight, in pounds, are listed in the table, and shown as an ordered pair in the third column.

Plot the points on a coordinate grid.

 $\begin{array}{c}\text{Height}\hfill \\ x\hfill \end{array}$ $\begin{array}{c}\text{Weight}\hfill \\ y\hfill \end{array}$ $\begin{array}{}\\ \left(x,y\right)\hfill \end{array}$ $28$ $22$ $\left(28,22\right)$ $31$ $27$ $\left(31,27\right)$ $33$ $33$ $\left(33,33\right)$ $37$ $35$ $\left(37,35\right)$ $40$ $41$ $\left(40,41\right)$ $42$ $45$ $\left(42,45\right)$

Why is only Quadrant I needed?

## Writing exercises

Have you ever used a map with a rectangular coordinate system? Describe the map and how you used it.

Answers may vary.

How do you determine if an ordered pair is a solution to a given equation?

## Self check

After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

If most of your checks were:

…confidently. Congratulations! You have achieved the objectives in this section. Reflect on the study skills you used so that you can continue to use them. What did you do to become confident of your ability to do these things? Be specific.

…with some help. This must be addressed quickly because topics you do not master become potholes in your road to success. In math, every topic builds upon previous work. It is important to make sure you have a strong foundation before you move on. Who can you ask for help? Your fellow classmates and instructor are good resources. Is there a place on campus where math tutors are available? Can your study skills be improved?

…no—I don’t get it! This is a warning sign and you must not ignore it. You should get help right away or you will quickly be overwhelmed. See your instructor as soon as you can to discuss your situation. Together you can come up with a plan to get you the help you need.

#### Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
A soccer field is a rectangle 130 meters wide and 110 meters long. The coach asks players to run from one corner to the other corner diagonally across. What is that distance, to the nearest tenths place.
Kimberly Reply
Jeannette has $5 and$10 bills in her wallet. The number of fives is three more than six times the number of tens. Let t represent the number of tens. Write an expression for the number of fives.
August Reply
What is the expressiin for seven less than four times the number of nickels
Leonardo Reply
How do i figure this problem out.
how do you translate this in Algebraic Expressions
linda Reply
why surface tension is zero at critical temperature
Shanjida
I think if critical temperature denote high temperature then a liquid stats boils that time the water stats to evaporate so some moles of h2o to up and due to high temp the bonding break they have low density so it can be a reason
s.
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply

### Read also:

#### Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Prealgebra. OpenStax CNX. Jul 15, 2016 Download for free at http://legacy.cnx.org/content/col11756/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Prealgebra' conversation and receive update notifications? By   By By By Mldelatte  By By By