<< Chapter < Page Chapter >> Page >

Does a linear, exponential, or logarithmic model best fit the data in [link] ? Find the model.

x 1 2 3 4 5 6 7 8 9
y 3.297 5.437 8.963 14.778 24.365 40.172 66.231 109.196 180.034

Exponential. y = 2 e 0.5 x .

Got questions? Get instant answers now!

Expressing an exponential model in base e

While powers and logarithms of any base can be used in modeling, the two most common bases are 10 and e . In science and mathematics, the base e is often preferred. We can use laws of exponents and laws of logarithms to change any base to base e .

Given a model with the form y = a b x , change it to the form y = A 0 e k x .

  1. Rewrite y = a b x as y = a e ln ( b x ) .
  2. Use the power rule of logarithms to rewrite y as y = a e x ln ( b ) = a e ln ( b ) x .
  3. Note that a = A 0 and k = ln ( b ) in the equation y = A 0 e k x .

Changing to base e

Change the function y = 2.5 ( 3.1 ) x so that this same function is written in the form y = A 0 e k x .

The formula is derived as follows

y = 2.5 ( 3.1 ) x = 2.5 e ln ( 3.1 x ) Insert exponential and its inverse . = 2.5 e x ln 3.1 Laws of logs . = 2.5 e ( ln 3.1 ) x Commutative law of multiplication
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Change the function y = 3 ( 0.5 ) x to one having e as the base.

y = 3 e ( ln 0.5 ) x

Got questions? Get instant answers now!

Key equations

Half-life formula If   A = A 0 e k t , k < 0 , the half-life is   t = ln ( 2 ) k .
Carbon-14 dating t = ln ( A A 0 ) 0.000121 .
A 0   A   is the amount of carbon-14 when the plant or animal died
t   is the amount of carbon-14 remaining today
is the age of the fossil in years
Doubling time formula If   A = A 0 e k t , k > 0 , the doubling time is   t = ln 2 k
Newton’s Law of Cooling T ( t ) = A e k t + T s , where   T s   is the ambient temperature,   A = T ( 0 ) T s , and   k   is the continuous rate of cooling.

Key concepts

  • The basic exponential function is f ( x ) = a b x . If b > 1 , we have exponential growth; if 0 < b < 1 , we have exponential decay.
  • We can also write this formula in terms of continuous growth as A = A 0 e k x , where A 0 is the starting value. If A 0 is positive, then we have exponential growth when k > 0 and exponential decay when k < 0. See [link] .
  • In general, we solve problems involving exponential growth or decay in two steps. First, we set up a model and use the model to find the parameters. Then we use the formula with these parameters to predict growth and decay. See [link] .
  • We can find the age, t , of an organic artifact by measuring the amount, k , of carbon-14 remaining in the artifact and using the formula t = ln ( k ) 0.000121 to solve for t . See [link] .
  • Given a substance’s doubling time or half-time, we can find a function that represents its exponential growth or decay. See [link] .
  • We can use Newton’s Law of Cooling to find how long it will take for a cooling object to reach a desired temperature, or to find what temperature an object will be after a given time. See [link] .
  • We can use logistic growth functions to model real-world situations where the rate of growth changes over time, such as population growth, spread of disease, and spread of rumors. See [link] .
  • We can use real-world data gathered over time to observe trends. Knowledge of linear, exponential, logarithmic, and logistic graphs help us to develop models that best fit our data. See [link] .
  • Any exponential function with the form y = a b x can be rewritten as an equivalent exponential function with the form y = A 0 e k x where k = ln b . See [link] .

Questions & Answers

how fast can i understand functions without much difficulty
Joe Reply
what is set?
Kelvin Reply
a colony of bacteria is growing exponentially doubling in size every 100 minutes. how much minutes will it take for the colony of bacteria to triple in size
Divya Reply
I got 300 minutes. is it right?
no. should be about 150 minutes.
It should be 158.5 minutes.
ok, thanks
100•3=300 300=50•2^x 6=2^x x=log_2(6) =2.5849625 so, 300=50•2^2.5849625 and, so, the # of bacteria will double every (100•2.5849625) = 258.49625 minutes
what is the importance knowing the graph of circular functions?
Arabella Reply
can get some help basic precalculus
ismail Reply
What do you need help with?
how to convert general to standard form with not perfect trinomial
Camalia Reply
can get some help inverse function
Rectangle coordinate
Asma Reply
how to find for x
Jhon Reply
it depends on the equation
yeah, it does. why do we attempt to gain all of them one side or the other?
whats a domain
mike Reply
The domain of a function is the set of all input on which the function is defined. For example all real numbers are the Domain of any Polynomial function.
Spiro; thanks for putting it out there like that, 😁
foci (–7,–17) and (–7,17), the absolute value of the differenceof the distances of any point from the foci is 24.
Churlene Reply
difference between calculus and pre calculus?
Asma Reply
give me an example of a problem so that I can practice answering
Jenefa Reply
dont forget the cube in each variable ;)
of she solves that, well ... then she has a lot of computational force under her command ....
what is a function?
CJ Reply
I want to learn about the law of exponent
Quera Reply
explain this
Hinderson Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?