# 0.6 Regularity, moments, and wavelet system design

 Page 1 / 13

We now look at a particular way to use the remaining $\frac{N}{2}-1$ degrees of freedom to design the $N$ values of $h\left(n\right)$ after satisfying [link] and [link] , which insure the existence and orthogonality (or property of being a tight frame) of the scaling function and wavelets [link] , [link] , [link] .

One of the interesting characteristics of the scaling functions and wavelets is that while satisfying [link] and [link] will guarantee the existence of an integrable scaling function, it may be extraordinarilyirregular, even fractal in nature. This may be an advantage in analyzing rough or fractal signals but it is likely to be a disadvantage for mostsignals and images.

We will see in this section that the number of vanishing moments of ${h}_{1}\left(n\right)$ and $\psi \left(t\right)$ are related to the smoothness or differentiability of $\phi \left(t\right)$ and $\psi \left(t\right)$ . Unfortunately, smoothness is difficult to determine directly because, unlike with differential equations, thedefining recursion [link] does not involve derivatives.

We also see that the representation and approximation of polynomials are related to the number of vanishing or minimized wavelet moments. Sincepolynomials are often a good model for certain signals and images, this property is both interesting and important.

The number of zero scaling function moments is related to the “goodness" of the approximation of high-resolution scaling coefficients by samples of thesignal. They also affect the symmetry and concentration of the scaling function and wavelets.

This section will consider the basic 2-band or multiplier-2 case defined in [link] . The more general M-band or multiplier-M case is discussed in Section: Multiplicity-M (M-Band) Scaling Functions and Wavelets .

## K-regular scaling filters

Here we start by defining a unitary scaling filter to be an FIR filter with coefficients $h\left(n\right)$ from the basic recursive [link] satisfying the admissibility conditions from [link] and orthogonality conditions from [link] as

$\sum _{n}h\left(n\right)=\sqrt{2}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\text{and}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\sum _{k}h\left(k\right)\phantom{\rule{0.166667em}{0ex}}h\left(k+2m\right)=\delta \left(m\right).$

The term “scaling filter" comes from Mallat's algorithm, and the relation to filter banks discussed in Chapter: Filter Banks and the Discrete Wavelet Transform . The term “unitary" comesfrom the orthogonality conditions expressed in filter bank language, which is explained in Chapter: Filter Banks and Transmultiplexers .

A unitary scaling filter is said to be $K$ - regular if its z-transform has $K$ zeros at $z={e}^{i\pi }$ . This looks like

$H\left(z\right)={\left(\frac{1+{z}^{-1}}{2}\right)}^{K}Q\left(z\right)$

where $H\left(z\right)={\sum }_{n}h\left(n\right)\phantom{\rule{0.166667em}{0ex}}{z}^{-n}$ is the z-transform of the scaling coefficients $h\left(n\right)$ and $Q\left(z\right)$ has no poles or zeros at $z={e}^{i\pi }$ . Note that we are presenting a definition of regularity of $h\left(n\right)$ , not of the scaling function $\phi \left(t\right)$ or wavelet $\psi \left(t\right)$ . They are related but not the same. Note also from [link] that any unitary scaling filter is at least $K=1$ regular.

The length of the scaling filter is $N$ which means $H\left(z\right)$ is an $N-1$ degree polynomial. Since the multiple zero at $z=-1$ is order $K$ , the polynomial $Q\left(z\right)$ is degree $N-1-K$ . The existence of $\phi \left(t\right)$ requires the zero th moment be $\sqrt{2}$ which is the result of the linear condition in [link] . Satisfying the conditions for orthogonality requires $N/2$ conditions which are the quadratic equations in [link] . This means the degree of regularity is limited by

#### Questions & Answers

how can chip be made from sand
Eke Reply
is this allso about nanoscale material
Almas
are nano particles real
Missy Reply
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

### Read also:

#### Get Jobilize Job Search Mobile App in your pocket Now!

Source:  OpenStax, Wavelets and wavelet transforms. OpenStax CNX. Aug 06, 2015 Download for free at https://legacy.cnx.org/content/col11454/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wavelets and wavelet transforms' conversation and receive update notifications? By OpenStax By OpenStax By OpenStax By Robert Murphy By Rohini Ajay By David Corey By Katy Pratt By OpenStax By John Gabrieli By Anh Dao