<< Chapter < Page Chapter >> Page >

These smaller intervals all work out well in mean-tone tuning, but the result is a fifth that is noticeably smaller than a pure fifth. And a series of pure thirds will also eventually not line up with pure octaves, so an instrument tuned this way will also have a problem with wolf intervals.

As mentioned above, Pythagorean tuning made sense in medieval times, when music was dominated by fifths. Once the concept of harmony in thirds took hold, thirds became the most important interval ; simple perfect fifths were now heard as "austere" and, well, medieval-sounding. So mean-tone tuning was very popular in Europe in the 16th through 18th centuries.

But fifths can't be avoided entirely. A basic major or minor chord, for example, is built of two thirds, but it also has a perfect fifth between its outer two notes (see Triads ). So even while mean-tone tuning was enjoying great popularity, some composers and musicians were searching for other solutions.

Just intonation

In just intonation, the fifth and the third are both based on the pure, harmonic series interval. Because chords are constructed of thirds and fifths (see Triads ), this tuning makes typical Western harmonies particularly resonant and pleasing to the ear; so this tuning is often used (sometimes unconsciously) by musicians who can make small tuning adjustments quickly. This includes vocalists, most wind instruments, and many string instruments.

As explained above , using pure fifths and thirds will require some sort of adjustment somewhere. Just intonation makes two accommodations to allow its pure intervals. One is to allow inequality in the other intervals. Look again at the harmonic series .

Both the 9:8 ratio and the 10:9 ratio in the harmonic series are written as whole notes. 9:8 is considered a major whole tone and 10:9 a minor whole tone . The difference between them is less than a quarter of a semitone.

As the series goes on, the ratios get smaller and the notes closer together. Common notation writes all of these "close together" intervals as whole steps (whole tones) or half steps (semitones), but they are of course all slightly different from each other. For example, the notes with frequency ratios of 9:8 and 10:9 and 11:10 are all written as whole steps. To compare how close (or far) they actually are, turn the ratios into decimals.

    Whole step ratios written as decimals

  • 9/8 = 1.125
  • 10/9 = 1.111
  • 11/10 = 1.1

These are fairly small differences, but they can still be heard easily by the human ear. Just intonation uses both the 9:8 whole tone, which is called a major whole tone and the 10:9 whole tone, which is called a minor whole tone , in order to construct both pure thirds and pure fifths.

In case you are curious, the size of the whole tone of the "mean tone" system is also the mean, or average, of the major and minor whole tones.

The other accommodation with reality that just intonation must make is the fact that a single just-intonation tuning cannot be used to play in multiple keys. In constructing a just-intonation tuning, it matters which steps of the scale are major whole tones and which are minor whole tones, so an instrument tuned exactly to play with just intonation in the key of C major will have to retune to play in C sharp major or D major. For instruments that can tune almost instantly, like voices, violins, and trombones, this is not a problem; but it is unworkable for pianos, harps, and other other instruments that cannot make small tuning adjustments quickly.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Special subjects in music theory. OpenStax CNX. Feb 04, 2005 Download for free at http://cnx.org/content/col10220/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Special subjects in music theory' conversation and receive update notifications?

Ask