# 0.13 Least squares design of iir filters  (Page 9/9)

 Page 9 / 9

## Jackson's method

The following is a recent approach (from 2008) by Leland Jackson [link] based in the frequency domain. Consider vectors $a\in {\mathbb{R}}^{N}$ and $b\in {\mathbb{R}}^{M}$ such that

$H\left(\omega \right)=\frac{B\left(\omega \right)}{A\left(\omega \right)}$

where $H\left(\omega \right),B\left(\omega \right),A\left(\omega \right)$ are the Fourier transforms of $h,b$ and $a$ respectively. For a discrete frequency set one can describe Fourier transform vectors $B={\mathbf{W}}_{b}b$ and $A={\mathbf{W}}_{a}a$ (where ${\mathbf{W}}_{b},{\mathbf{W}}_{a}$ correspond to the discrete Fourier kernels for $b,a$ respectively). Define

${H}_{a}\left({\omega }_{k}\right)=\frac{1}{A\left({\omega }_{k}\right)}$

In vector notation, let ${\mathbf{D}}_{a}=\text{diag}\left({H}_{a}\right)=\text{diag}\left(1/A\right)$ . Then

$H\left(\omega \right)=\frac{B\left(\omega \right)}{A\left(\omega \right)}={H}_{a}\left(\omega \right)B\left(\omega \right)⇒H={\mathbf{D}}_{a}B$

Let ${H}_{d}\left(\omega \right)$ be the desired complex frequency response. Define ${\mathbf{D}}_{d}=\text{diag}\left({H}_{d}\right)$ . Then one wants to solve

$\text{min}\phantom{\rule{0.277778em}{0ex}}{E}^{*}E={\parallel E\parallel }_{2}^{2}$

where $E=H-{H}_{d}$ . From [link] one can write $H={H}_{d}+E$ as

$H={\mathbf{D}}_{a}B={\mathbf{D}}_{a}{\mathbf{W}}_{b}b$

Therefore

${H}_{d}=H-E={\mathbf{D}}_{a}{\mathbf{W}}_{b}b-E$

Solving [link] for $b$ one gets

$b=\left({\mathbf{D}}_{a}{\mathbf{W}}_{b}\right)\setminus {H}_{d}$

Also,

${H}_{d}={\mathbf{D}}_{d}\stackrel{^}{I}={\mathbf{D}}_{d}{\mathbf{D}}_{a}A={\mathbf{D}}_{a}{\mathbf{D}}_{d}A={\mathbf{D}}_{a}{\mathbf{D}}_{d}{\mathbf{W}}_{a}a$

where $\stackrel{^}{I}$ is a unit column vector. Therefore

$H-E={H}_{d}={\mathbf{D}}_{a}{\mathbf{D}}_{d}{\mathbf{W}}_{a}a$

${\mathbf{D}}_{a}{\mathbf{W}}_{b}b-E={\mathbf{D}}_{a}{\mathbf{D}}_{d}{\mathbf{W}}_{a}a$

or

${\mathbf{D}}_{a}{\mathbf{D}}_{d}{\mathbf{W}}_{a}a+E={\mathbf{D}}_{a}{\mathbf{W}}_{b}b$

which in a least squares sense results in

$a=\left({\mathbf{D}}_{a}{\mathbf{D}}_{d}{\mathbf{W}}_{a}\right)\setminus \left({\mathbf{D}}_{a}{\mathbf{W}}_{b}b\right)$

$a=\left({\mathbf{D}}_{a}{\mathbf{D}}_{d}{\mathbf{W}}_{a}\right)\setminus \left({\mathbf{D}}_{a}{\mathbf{W}}_{b}\left[\left({\mathbf{D}}_{a}{\mathbf{W}}_{b}\right)\setminus {H}_{d}\right]\right)$

As a summary, at the $i$ -th iteration one can write [link] and [link] as follows,

$\begin{array}{cc}\hfill {b}_{i}& =\left(\text{diag}\left(1/{A}_{i-1}\right){\mathbf{W}}_{b}\right)\setminus {H}_{d}\hfill \\ \hfill {a}_{i}& =\left(\text{diag}\left(1/{A}_{i-1}\right)\text{diag}\left({H}_{d}\right){\mathbf{W}}_{a}\right)\setminus \left(\text{diag}\left(1/{A}_{i-1}\right){\mathbf{W}}_{b}{b}_{i}\right)\hfill \end{array}$

## Soewito's quasilinearization method

Consider the equation error residual function

$\begin{array}{c}\hfill \begin{array}{cc}\hfill e\left({\omega }_{k}\right)& =B\left({\omega }_{k}\right)-D\left({\omega }_{k}\right)·A\left({\omega }_{k}\right)\hfill \\ & =\sum _{n=0}^{M}{b}_{n}{e}^{-j{\omega }_{k}n}-D\left({\omega }_{k}\right)·\left(1,+,\sum _{n=1}^{N},{a}_{n},{e}^{-j{\omega }_{k}n}\right)\hfill \\ & ={b}_{0}+{b}_{1}{e}^{-j{\omega }_{k}}+\cdots +{b}_{M}{e}^{-j{\omega }_{k}M}\cdots \hfill \\ & \phantom{\rule{56.9055pt}{0ex}}-{D}_{k}-{D}_{k}{a}_{1}{e}^{-j{\omega }_{k}}-\cdots -{D}_{k}{a}_{N}{e}^{-j{\omega }_{k}N}\hfill \\ & =\left({b}_{0},+,\cdots ,{b}_{M},{e}^{-j{\omega }_{k}M}\right)-{D}_{k}\left({a}_{1},{e}^{-j{\omega }_{k}},+,\cdots ,{a}_{N},{e}^{-j{\omega }_{k}N}\right)-{D}_{k}\hfill \end{array}\end{array}$

with ${D}_{k}=D\left({\omega }_{k}\right)$ . The last equation indicates that one can represent the equation error in matrix form as follows,

$e=\mathbf{F}h-D$

where

$\mathbf{F}=\left[\begin{array}{ccccccc}1& {e}^{-j{\omega }_{0}}& \cdots & {e}^{-j{\omega }_{0}M}& -{D}_{0}{e}^{-j{\omega }_{0}}& \cdots & -{D}_{0}{e}^{-j{\omega }_{0}N}\\ ⋮& ⋮& & ⋮& ⋮& & ⋮\\ 1& {e}^{-j{\omega }_{L-1}}& \cdots & {e}^{-j{\omega }_{L-1}M}& -{D}_{L-1}{e}^{-j{\omega }_{L-1}}& \cdots & -{D}_{L-1}{e}^{-j{\omega }_{L-1}N}\end{array}\right]$

and

$h=\left[\begin{array}{c}{b}_{0}\\ {b}_{1}\\ ⋮\\ {b}_{M}\\ {a}_{1}\\ ⋮\\ {a}_{N}\end{array}\right]\phantom{\rule{1.em}{0ex}}\text{and}\phantom{\rule{1.em}{0ex}}D=\left[\begin{array}{c}{D}_{0}\\ ⋮\\ {D}_{L-1}\end{array}\right]$

Consider now the solution error residual function

$\begin{array}{cc}\hfill s\left({\omega }_{k}\right)& =H\left({\omega }_{k}\right)-D\left({\omega }_{k}\right)=\frac{B\left({\omega }_{k}\right)}{A\left({\omega }_{k}\right)}-D\left({\omega }_{k}\right)\hfill \\ & =\frac{1}{A\left({\omega }_{k}\right)}\left[B,\left({\omega }_{k}\right),-,D,\left({\omega }_{k}\right),·,A,\left({\omega }_{k}\right)\right]\hfill \\ & =W\left({\omega }_{k}\right)e\left({\omega }_{k}\right)\hfill \end{array}$

Therefore one can write the solution error in matrix form as follows

$s=\mathbf{W}\left(\mathbf{F}h-D\right)$

where $\mathbf{W}$ is a diagonal matrix with $\frac{1}{A\left(\omega \right)}$ in its diagonal. From [link] the least-squared solution error ${\epsilon }_{s}={s}^{*}s$ can be minimized by

$h={\left({\mathbf{F}}^{*}{\mathbf{W}}^{2}\mathbf{F}\right)}^{-1}{\mathbf{F}}^{*}{\mathbf{W}}^{2}D$

From [link] an iteration Soewito refers to this expression as the Steiglitz-McBride Mode-1 in frequency domain. could be defined as follows

${h}_{i+1}={\left({\mathbf{F}}^{*}{\mathbf{W}}_{i}^{2}\mathbf{F}\right)}^{-1}{\mathbf{F}}^{*}{\mathbf{W}}_{i}^{2}D$

by setting the weights $\mathbf{W}$ in [link] equal to ${A}_{k}\left(\omega \right)$ , the Fourier transform of the current solution for $a$ .

A more formal approach to minimizing ${\epsilon }_{s}$ consists in using a gradient method (these approaches are often referred to as Newton-like methods). First one needs to compute the Jacobian matrix $\mathbf{J}$ of $s$ , where the $pq$ -th term of $\mathbf{J}$ is given by ${\mathbf{J}}_{pq}=\frac{\partial {s}_{p}}{\partial {h}_{q}}$ with $s$ as defined in [link] . Note that the $p$ -th element of $s$ is given by

${s}_{p}={H}_{p}-{D}_{p}=\frac{{B}_{p}}{{A}_{p}}-{D}_{p}$

For simplicity one can consider these reduced form expressions for the independent components of $h$ ,

$\begin{array}{ccc}\hfill \frac{\partial {s}_{p}}{\partial {b}_{q}}& =& \frac{1}{{A}_{p}}\frac{\partial }{\partial {b}_{q}}\sum _{n=0}^{M}{b}_{n}{e}^{-j{\omega }_{p}n}={W}_{p}{e}^{-j{\omega }_{p}q}\hfill \\ \hfill \frac{\partial {s}_{p}}{\partial {a}_{q}}& =& {B}_{p}\frac{\partial }{\partial {a}_{q}}\frac{1}{{A}_{p}}=\frac{-{B}_{p}}{{A}_{p}^{2}}\frac{\partial }{\partial {a}_{q}}\left(1,+,\sum _{n=1}^{N},{a}_{n},{e}^{-j{\omega }_{p}n}\right)=\frac{-1}{{A}_{p}}·\frac{{B}_{p}}{{A}_{p}}·{e}^{-j{\omega }_{p}q}\hfill \\ & =& -{W}_{p}{H}_{p}{e}^{-j{\omega }_{p}q}\hfill \end{array}$

Therefore on can express the Jacobian $\mathbf{J}$ as follows,

$\mathbf{J}=\mathbf{W}\mathbf{G}$

where

$\mathbf{G}=\left[\begin{array}{ccccccc}1& {e}^{-j{\omega }_{0}}& \cdots & {e}^{-j{\omega }_{0}M}& -{H}_{0}{e}^{-j{\omega }_{0}}& \cdots & -{H}_{0}{e}^{-j{\omega }_{0}N}\\ ⋮& ⋮& & ⋮& ⋮& & ⋮\\ 1& {e}^{-j{\omega }_{L-1}}& \cdots & {e}^{-j{\omega }_{L-1}M}& -{H}_{L-1}{e}^{-j{\omega }_{L-1}}& \cdots & -{H}_{L-1}{e}^{-j{\omega }_{L-1}N}\end{array}\right]$

Consider the solution error least-squares problem given by

$\underset{h}{\text{min}}f\left(h\right)={s}^{T}s$

where $s$ is the solution error residual vector as defined in [link] and depends on $h$ . It can be shown [link] that the gradient of the squared error $f\left(h\right)$ (namely $\nabla f$ ) is given by

$\nabla f={\mathbf{J}}^{*}s$

A necessary condition for a vector $h$ to be a local minimizer of $f\left(h\right)$ is that the gradient $\nabla f$ be zero at such vector. With this in mind and combining [link] and [link] in [link] one gets

$\nabla f={\mathbf{G}}^{*}{\mathbf{W}}^{2}\left(\mathbf{F}h-D\right)=\mathbf{0}$

$h={\left({\mathbf{G}}^{*}{\mathbf{W}}^{2}\mathbf{F}\right)}^{-1}{\mathbf{G}}^{*}{\mathbf{W}}^{2}D$

An iteration can be defined as follows Soewito refers to this expression as the Steiglitz-McBride Mode-2 in frequency domain. Compare to the Mode-1 expression and the use of ${G}_{i}$ instead of $F$ .

${h}_{i+1}={\left({\mathbf{G}}_{i}^{*}{\mathbf{W}}_{i}^{2}\mathbf{F}\right)}^{-1}{\mathbf{G}}_{i}^{*}{\mathbf{W}}_{i}^{2}D$

where matrices $\mathbf{W}$ and $\mathbf{G}$ reflect their dependency on current values of $a$ and $b$ .

Atmadji Soewito [link] expanded the method of quasilinearization of Bellman and Kalaba [link] to the design of IIR filters. To understand his method consider the first order of Taylor's expansion near ${H}_{i}\left(z\right)$ , given by

$\begin{array}{ccc}\hfill {H}_{i+1}\left(z\right)& =& {H}_{i}\left(z\right)+\frac{\left[{B}_{i+1}\left(z\right)-{B}_{i}\left(z\right)\right]{A}_{i}\left(z\right)-\left[{A}_{i+1}\left(z\right)-{A}_{i}\left(z\right)\right]{B}_{i}\left(z\right)}{{A}_{i}^{2}\left(z\right)}\hfill \\ & =& {H}_{i}\left(z\right)+\frac{{B}_{i+1}\left(z\right)-{B}_{i}\left(z\right)}{{A}_{i}\left(z\right)}-\frac{{B}_{i}\left(z\right)\left[{A}_{i+1}\left(z\right)-{A}_{i}\left(z\right)\right]}{{A}_{i}^{2}\left(z\right)}\hfill \end{array}$

Using the last result in the solution error residual function $s\left(\omega \right)$ and applying simplification leads to

$\begin{array}{ccc}\hfill s\left(\omega \right)& =& \frac{{B}_{i+1}\left(\omega \right)}{{A}_{i}\left(\omega \right)}-\frac{{H}_{i}\left(\omega \right){A}_{i+1}\left(\omega \right)}{{A}_{i}\left(\omega \right)}+\frac{{B}_{i}\left(\omega \right)}{{A}_{i}\left(\omega \right)}-D\left(\omega \right)\hfill \\ & =& \frac{1}{{A}_{i}\left(\omega \right)}\left[{B}_{i+1},\left(\omega \right),-,{H}_{i},\left(\omega \right),{A}_{i+1},\left(\omega \right),+,{B}_{i},\left(\omega \right),-,{A}_{i},\left(\omega \right),D,\left(\omega \right)\right]\hfill \end{array}$

Equation [link] can be expressed (dropping the use of $\omega$ for simplicity) as

$s=W\left(\left(\left[{B}_{i+1},-,{H}_{i},\left({A}_{i+1}-1\right)\right],-,{H}_{i}\right),+,\left(\left[{B}_{i},-,D,\left({A}_{i}-1\right)\right],-,D\right)\right)$

One can recognize the two terms in brackets as $\mathbf{G}{h}_{i+1}$ and $\mathbf{F}{h}_{i}$ respectively. Therefore [link] can be represented in matrix notation as follows,

$s=\mathbf{W}\left[\mathbf{G}{h}_{i+1}-\left(D+{H}_{i}-\mathbf{F}{h}_{i}\right)\right]$

with $H={\left[{H}_{0},{H}_{1},\cdots ,{H}_{L-1}\right]}^{T}$ . Therefore one can minimize ${s}^{T}s$ from [link] with

${h}_{i+1}={\left({\mathbf{G}}_{i}^{*}{\mathbf{W}}_{i}^{2}{\mathbf{G}}_{i}\right)}^{-1}{\mathbf{G}}_{i}^{*}{\mathbf{W}}_{i}^{2}\left(D+{H}_{i}-\mathbf{F}{h}_{i}\right)$

since all the terms inside the parenthesis in [link] are constant at the $\left(i+1\right)$ -th iteration. In a sense, [link] is similar to [link] , where the desired function is updated from iteration to iteration as in [link] .

It is important to note that any of the three algorithms can be modified to solve a weighted ${l}_{2}$ IIR approximation using a weighting function $W\left(\omega \right)$ by defining

$V\left(\omega \right)=\frac{W\left(\omega \right)}{A\left(\omega \right)}$

Taking [link] into account, the following is a summary of the three different updates discussed so far:

$\begin{array}{cc}\hfill \text{SMB}\phantom{\rule{4.pt}{0ex}}\text{Frequency}\phantom{\rule{4.pt}{0ex}}\text{Mode-1:}& \phantom{\rule{8.5359pt}{0ex}}{h}_{i+1}={\left({\mathbf{F}}^{*}{\mathbf{V}}_{i}^{2}\mathbf{F}\right)}^{-1}{\mathbf{F}}^{*}{\mathbf{V}}_{i}^{2}D\hfill \\ \hfill \text{SMB}\phantom{\rule{4.pt}{0ex}}\text{Frequency}\phantom{\rule{4.pt}{0ex}}\text{Mode-2:}& \phantom{\rule{8.5359pt}{0ex}}{h}_{i+1}={\left({\mathbf{G}}_{i}^{*}{\mathbf{V}}_{i}^{2}\mathbf{F}\right)}^{-1}{\mathbf{G}}_{i}^{*}{\mathbf{V}}_{i}^{2}D\hfill \\ \hfill \text{Soewito's}\phantom{\rule{4.pt}{0ex}}\text{quasilinearization:}& \phantom{\rule{8.5359pt}{0ex}}{h}_{i+1}={\left({\mathbf{G}}_{i}^{*}{\mathbf{V}}_{i}^{2}{\mathbf{G}}_{i}\right)}^{-1}{\mathbf{G}}_{i}^{*}{\mathbf{V}}_{i}^{2}\left(D+{H}_{i}-\mathbf{F}{h}_{i}\right)\hfill \end{array}$

where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
Got questions? Join the online conversation and get instant answers!