# Martingale sequences: the concept, examples, and basic patterns  (Page 2/2)

 Page 2 / 2

Notation .  When we write $\left({X}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is a martingale (submartingale, supermartingale), we are asserting X N is integrable, Z N is a decision sequence, ${X}_{\mathbf{N}}\sim {Z}_{\mathbf{N}}$ , and X N is a MG (SMG, SRMG) relative to Z N .

Definition .  If Y N is integrable and Z N is a decision sequence, then

1. Y N is absolutely fair relative to Z N iff
${Y}_{\mathbf{N}}\sim {Z}_{\mathbf{N}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{and}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}E\left[{Y}_{n+1}|{W}_{n}\right]=0\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\forall \phantom{\rule{0.277778em}{0ex}}n\in \mathbf{N}$
2. Y N is favorable relative to Z N iff
${Y}_{\mathbf{N}}\sim {Z}_{\mathbf{N}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{and}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}E\left[{Y}_{n+1}|{W}_{n}\right]\ge 0\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\forall \phantom{\rule{0.277778em}{0ex}}n\in \mathbf{N}$
3. Y N is unfavorable relative to Z N iff
${Y}_{\mathbf{N}}\sim {Z}_{\mathbf{N}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{and}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}E\left[{Y}_{n+1}|{W}_{n}\right]\le 0\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\forall \phantom{\rule{0.277778em}{0ex}}n\in \mathbf{N}$

Notation .  When we write $\left({Y}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is absolutely fair (favorable, unfavorable), we are asserting Y N is integrable, Z N is a decision sequence, ${Y}_{\mathbf{N}}\sim {Z}_{\mathbf{N}}$ , and Y N is absolutely fair (favorable, unfavorable) relative to Z N .    IXA2-2

## Ixa2-1

If X N is a basic sequence and Y N is the corresponding incremental sequence, then

1. $\left({X}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is a martingale iff $\left({Y}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is absolutely fair.
2. $\left({X}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is a submartingale iff $\left({Y}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is favorable.
3. $\left({X}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is a supermartingale iff $\left({Y}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is unfavorable.

Let * be any one of the symbols $=,\phantom{\rule{0.277778em}{0ex}}\ge$ , or $\le$ .  Then by linearity and (CE7)

$E\left[{X}_{n+1}|{W}_{n}\right]=E\left[{Y}_{n+1}|{W}_{n}\right]+E\left[{X}_{n}|{W}_{n}\right]=E\left[{Y}_{n+1}|{W}_{n}\right]+{X}_{n}\phantom{\rule{0.277778em}{0ex}}*\phantom{\rule{0.277778em}{0ex}}{X}_{n}\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{4pt}{0ex}}\mathrm{iff}\phantom{\rule{4pt}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}E\left[{Y}_{n+1}|{W}_{n}\right]\phantom{\rule{0.277778em}{0ex}}*\phantom{\rule{0.277778em}{0ex}}0\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}$

Remarks

1. $\left({X}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is a SMG iff $\left(-{X}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is a SRMG
2. We write (S)MG to indicate the same statement can be made for a MG or a SMG with the appropriate choice of = or $\ge$
3. We write $\left(\ge \right)$ to indicate simultaneously two cases:
• $\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\left(\ge \right)$ read as = in all places (for a MG)
• $\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\left(\ge \right)$ read as $\ge$ in all places (for a SMG)

## Ixa3-1

If $\left({X}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is a (S)MG and ${X}_{\mathbf{N}}\sim {H}_{\mathbf{N}}$ , with ${H}_{\mathbf{N}}\sim {Z}_{\mathbf{N}}$ ,  then $\left({X}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{H}_{\mathbf{N}}\right)$ is a (S)MG.

Let ${K}_{n}=\left({H}_{0},\phantom{\rule{0.166667em}{0ex}}{H}_{1},\phantom{\rule{0.166667em}{0ex}}\cdots ,\phantom{\rule{0.166667em}{0ex}}{H}_{n}\right)$ .  By (CE9) , the (S)MG definition, monotonicity, and (CE7)

$E\left[{X}_{n+1}|{K}_{n}\right]=E\left\{E\left[{X}_{n+1}|{W}_{n}\right]|{K}_{n}\right\}\phantom{\rule{0.277778em}{0ex}}\left(\ge \right)\phantom{\rule{0.277778em}{0ex}}E\left[{X}_{n}|{K}_{n}\right]={X}_{n}\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}$

## Ixa3-2

For integrable ${X}_{\mathbf{N}}\sim {Z}_{\mathbf{N}}$ , the following are equivalent

$\begin{array}{cccc}\text{a}& \left({X}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)& & \text{is a (S)MG}\\ \text{b}& E\left[{X}_{n+k}|{W}_{n}\right]\phantom{\rule{0.277778em}{0ex}}\left(\ge \right)\phantom{\rule{0.277778em}{0ex}}{X}_{n}\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.& \forall & n,\phantom{\rule{0.277778em}{0ex}}k\in \mathbf{N}\\ \text{c}& E\left[{I}_{C}{X}_{n+1}\right]\phantom{\rule{0.277778em}{0ex}}\left(\ge \right)\phantom{\rule{0.277778em}{0ex}}E\left[{I}_{C}{X}_{n}\right]& \forall & C\in \sigma \left({W}_{n}\right)& \forall & n\in \mathbf{N}\\ \text{d}& E\left[{I}_{C}{X}_{n+k}\right]\phantom{\rule{0.277778em}{0ex}}\left(\ge \right)\phantom{\rule{0.277778em}{0ex}}E\left[{I}_{C}{X}_{n}\right]& \forall & C\in \sigma \left({W}_{n}\right)& \forall & n,\phantom{\rule{0.277778em}{0ex}}k\in \mathbf{N}\end{array}$

• as a  special case
• By (CE9) , (a), and monotonicity
$E\left[{X}_{n+k}|{W}_{n}\right]=E\left\{E\left[{X}_{n+k}|{W}_{n+k-1}\right]|{W}_{n}\right\}\phantom{\rule{3.33333pt}{0ex}}\left(\ge \right)\phantom{\rule{0.277778em}{0ex}}E\left[{X}_{n+k-1}|{W}_{n}\right]\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}$
$k-1$ iterations yield   $E\left[{X}_{n+k}|{W}_{n}\right]\phantom{\rule{0.277778em}{0ex}}\left(\ge \right)\phantom{\rule{0.277778em}{0ex}}{X}_{n}\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}$
• as a  special case
• By (CE1) and (c),   $E\left[{I}_{C}{X}_{n+1}\right]=E\left\{{I}_{C}E\left[{X}_{n+1}|{W}_{n}\right]\right\}\phantom{\rule{0.277778em}{0ex}}\left(\ge \right)\phantom{\rule{0.277778em}{0ex}}E\left[{I}_{C}{X}_{n}\right]\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}$ .   Since ${X}_{n}\sim {W}_{n}\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}$ and $E\left[{X}_{n+1}|{W}_{n}\right]\sim {W}_{n}\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}$ , the result follows from the uniqueness property (E5)
• By (CE1) , (b), and monotonicity $E\left[{I}_{C}{X}_{n+k}\right]=E\left\{{I}_{C}E\left[{X}_{n+k}|{W}_{n}\right]\right\}\phantom{\rule{0.277778em}{0ex}}\left(\ge \right)\phantom{\rule{0.277778em}{0ex}}E\left[{I}_{C}{X}_{n}\right]$

We thus have $d⇒c⇒a⇔b⇒d$

## Ixa3-3

If $\left({X}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is a (S)MG, then $E\left[{X}_{n+k}\right]\phantom{\rule{0.277778em}{0ex}}\left(\ge \right)\phantom{\rule{0.277778em}{0ex}}E\left[{X}_{n}\right]\phantom{\rule{0.277778em}{0ex}}\left(\ge \right)\phantom{\rule{0.277778em}{0ex}}E\left[{X}_{0}\right]$

## Ixa3-4

$\left({X}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is a (S)MG iff $E\left[{X}_{q}-{X}_{p}|{W}_{n}\right]\phantom{\rule{0.277778em}{0ex}}\left(\ge \right)\phantom{\rule{0.277778em}{0ex}}0\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\forall \phantom{\rule{0.277778em}{0ex}}n\le p

EXERCISE.  Note ${X}_{q}-{X}_{p}={Y}_{p+1}+\phantom{\rule{0.277778em}{0ex}}\cdots \phantom{\rule{0.277778em}{0ex}}+{Y}_{q}$

## Ixa3-5

If $\left({X}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is an ${\mathbf{L}}^{2}$ MG, then

$\begin{array}{ccc}E\left[{X}_{q}-{X}_{p}\right]=0& \forall & p

1. $E\left[{X}_{q}-{X}_{p}\right]=E\left\{E\left[{X}_{q}-{X}_{p}|{W}_{n}\right]\right\}=0\phantom{\rule{3.33333pt}{0ex}}$ by (CE1b) and Thm IXA3-4
2. $E\left[{X}_{n}\left({X}_{q}-{X}_{p}\right)\right]=E\left\{{X}_{n}E\left[{X}_{q}-{X}_{p}|{W}_{n}\right]\right\}=0$ by (CE1b) , (CE8) , and Thm IXA3-4
3. As in b, since ${X}_{n}-{X}_{m}\sim {W}_{n}$
4. Suppose $p .  Then, since ${X}_{p}\sim {W}_{p}$ , $E\left[{X}_{p}{X}_{q}\right]=E\left\{{X}_{p}E\left[{X}_{q}|{W}_{p}\right]\right\}=E\left[{X}_{p}^{2}\right]$ by definition of MG.   For $q , interchange $p,\phantom{\rule{0.277778em}{0ex}}q$ in the argument above.
5. $E\left[{\left({X}_{q}-{X}_{p}\right)}^{2}\right]=E\left[{X}_{q}^{2}\right]-2E\left[{X}_{p}{X}_{q}\right]+E\left[{X}_{p}^{2}\right]=E\left[{X}_{q}^{2}\right]-2E\left[{X}_{p}^{2}\right]+E\left[{X}_{p}^{2}\right]$ by d, above
6. By c, $E\left[{Y}_{j}{Y}_{k}\right]=0$ for $j\ne k$ .  Hence, $E\left[{X}_{p}^{2}\right]=E\left[{\left(\sum _{k=0}^{p}{Y}_{k}\right)}^{2}\right]=\sum _{j}\sum _{k}E\left[{Y}_{j}{Y}_{k}\right]=\sum _{k=0}^{p}E\left[{Y}_{k}^{2}\right]$

A variety of weighted sums of increments are useful.

## Ixa3-6

Suppose $\left({X}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is a (S)MG and Y N is the incremental sequence. Let H 0 be a (nonnegative) constant and let ${H}_{n}\sim {W}_{n-1},\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}n\ge 1$ , be bounded (nonnegative).  Set

${X}_{n}^{*}=\sum _{k=0}^{n}{H}_{k}{Y}_{k}=\sum _{k=0}^{n}{Y}_{k}^{*}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\forall \phantom{\rule{0.277778em}{0ex}}n\in \mathbf{N}$

Then $\left({X}_{\mathbf{N}}^{*},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is a (S)MG.

$E\left[{Y}_{n+1}^{*}|{W}_{n}\right]=E\left[{H}_{n+1}{Y}_{n+1}|{W}_{n}\right]={H}_{n+1}E\left[{Y}_{n+1}|{W}_{n}\right]\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}$ by (CE8)

For MG case: $E\left[{Y}_{n+1}^{*}|{W}_{n}\right]=0\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}$ for arbitrary bounded H n

For SMG case:   $E\left[{Y}_{n+1}^{*}|{W}_{n}\right]\ge 0\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}$ for ${H}_{n}\ge 0$ , bounded

Remark .  This result extends the pattern in the introductory gambling example.   [link]  IXA3-3

## Ixa3-7

In Theorem IXA3-6 , if $E\left[{X}_{0}\right]\ge 0$ and $0\le {H}_{n}\le 1\mathrm{a}.\mathrm{s}.\forall n\in \mathbf{N}$ , then $0\le E\left[{X}_{n}^{*}\right]\le E\left[{X}_{n}\right]\forall n\in \mathbf{N}$

$E\left[{Y}_{n+1}|{W}_{n}\right]\ge \phantom{\rule{3.33333pt}{0ex}}{H}_{n+1}E\left[{Y}_{n+1}|{W}_{n}\right]\phantom{\rule{0.277778em}{0ex}}\left(\ge \right)\phantom{\rule{0.277778em}{0ex}}0\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}$ , by hypothesis, and ${H}_{n+1}E\left[{Y}_{n+1}|{W}_{n}\right]=E\left[{Y}_{n+1}^{*}|{W}_{n}\right]\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}$ , by (CE8) .   Thus, by monotonicity and (CE1b)

$E\left[{Y}_{n+1}\right]\phantom{\rule{0.277778em}{0ex}}\left(\ge \right)\phantom{\rule{0.277778em}{0ex}}E\left[{Y}_{n+1}^{*}\right]\phantom{\rule{0.277778em}{0ex}}\left(\ge \right)\phantom{\rule{0.277778em}{0ex}}0\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\forall \phantom{\rule{0.277778em}{0ex}}n\in \mathbf{N}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{and}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}E\left[{Y}_{0}\right]=E\left[{X}_{0}\right]\ge {H}_{0}E\left[{Y}_{0}\right]=E\left[{Y}_{0}^{*}\right]$

Hence

$E\left[{X}_{n}\right]=\sum _{k=0}^{n}E\left[{Y}_{k}\right]\ge \sum _{k=0}^{n}E\left[{Y}_{k}^{*}\right]=E\left[{X}_{n}^{*}\right]\ge 0$

Some important special cases

## Ixa3-8

Suppose integrable ${X}_{\mathbf{N}}\sim {Z}_{\mathbf{N}}$ . If ${X}_{n+1}-{X}_{n}\left(\ge \right)0\mathrm{a}.\mathrm{s}.\forall n\in \mathbf{N}$ , then $\left({X}_{\mathbf{N}},{Z}_{\mathbf{N}}\right)$ is a (S)MG.

Apply monotonicity and Theorem IXA3-4

## Ixa3-9

Suppose X N has independent increments.

1. If $E\left[{X}_{n}\right]=c$ , invariant with n , then X N is a MG.
2. If $E\left[{X}_{n+1}-{X}_{n}\right]\left(\ge \right)0,\forall n\in \mathbf{N}$ ,   then $\left({X}_{\mathbf{N}}$ is a (S)MG.
1. For any n , consider any $C\in \sigma \left({U}_{n}\right)$ .  By independent increments, $\left\{{I}_{C},\left({X}_{n+1}-{X}_{n}\right)\right\}$ is independent.  Hence, $E\left[{I}_{C}{X}_{n+1}\right]-E\left[{I}_{C}{X}_{n}\right]=E\left[{I}_{C}\left({X}_{n+1}-{X}_{n}\right)\right]=E\left[{I}_{C}\right]E\left[\left({X}_{n+1}-{X}_{n}\right)\right]\left(\ge \right)0$ . The desired result follows from Theorem IXA3-2(c) .

## Ixa3-10

Suppose g is a convex Borel function on an interval I which contains the range of all X n and

$E\left[|g\left({X}_{n}\right)|\right]<\infty \forall n\in \mathbf{N}$ ,  Let ${H}_{n}=g\left({X}_{n}\right)\forall n\in \mathbf{N}$ ,

1. If $\left({X}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is a MG, then $\left({H}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is a SMG.
2. If g is nondecreasing and $\left({X}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$ is a SMG, then so is $\left({H}_{\mathbf{N}},\phantom{\rule{0.166667em}{0ex}}{Z}_{\mathbf{N}}\right)$
• By Jensen's inequality and the definition of a MG
$E\left[g\left({X}_{n+1}\right)|{W}_{n}\right]\ge g\left(E,\left[,{X}_{n+1},|,{W}_{n},\right]\right)=g\left({X}_{n}\right)\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}$
• By Jensen's inequality
$E\left[g\left({X}_{n+1}\right)|{W}_{n}\right]\ge g\left(E,\left[,{X}_{n+1},|,{W}_{n},\right]\right)\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}$
Since $E\left[{X}_{n+1}|{W}_{n}\right]\ge {X}_{n}\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}$ and g is nondecreasing, we have
$g\left(E,\left[,{X}_{n+1},|,{W}_{n},\right]\right)\ge g\left({X}_{n}\right)\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}$

Some commonly utilized convex functions

1. $g\left(t\right)=|t|$
2. $g\left(t\right)={t}^{2}$ g is increasing for $t\ge 0$
3. $g\left(t\right)=u\left(t\right)t$ $\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}g\left({X}_{n}\right)={X}_{n}^{+}$ g nondecreasing for all t
4. $g\left(t\right)=\phantom{\rule{3.33333pt}{0ex}}-u\left(-t\right)t$ $g\left({X}_{n}\right)={X}_{n}^{-}$ g nonincreasing for all t
5. $g\left(t\right)={e}^{at},\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}a>0$ g is increasing for all t

## Ixa3-11

Consider integrable ${X}_{\mathbf{N}}\sim {Z}_{\mathbf{N}}$ .

1. If   $E\left[{X}_{n+1}|{W}_{n}\right]=a{X}_{n}\mathrm{a}.\mathrm{s}.\forall n$ and ${X}_{n}^{*}=\frac{1}{{a}^{n}}{X}_{n}\forall n$ , then $\left({X}_{\mathbf{N}}^{*},{Z}_{\mathbf{N}}\right)$ is a MG
2. If   $E\left[{X}_{n+1}|{W}_{n}\right]\ge a{X}_{n}\mathrm{a}.\mathrm{s}.,a>0,\forall n$ and ${X}_{n}^{*}=\frac{1}{{a}^{n}}{X}_{n}\forall n$ , then $\left({X}_{\mathbf{N}}^{*},{Z}_{\mathbf{N}}\right)$ is a SMG
$E\left[{X}_{n+1}^{*}|{W}_{n}\right]=\frac{1}{{a}^{n+1}}E\left[{X}_{n+1}|{W}_{n}\right]\phantom{\rule{0.277778em}{0ex}}\left(\ge \right)\phantom{\rule{0.277778em}{0ex}}\frac{1}{{a}^{n+1}}a{X}_{n}={X}_{n}^{*}\phantom{\rule{4pt}{0ex}}\mathrm{a}.\mathrm{s}.\phantom{\rule{0.166667em}{0ex}}$

The restrictionl $a>0$ is needed in the $\ge$ case.

How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
Got questions? Join the online conversation and get instant answers! By By     By  By By