# Introduction and key concepts

 Page 1 / 1

## Introduction

Now that we have studied the basics of longitudinal waves, we are ready to study sound waves in detail.

Have you ever thought about how amazing your sense of hearing is? It is actually pretty remarkable. There are many types of sounds: a car horn, a laughing baby, a barking dog, and somehow your brain can sort it all out. Though it seems complicated, it is rather simple to understand once you learn a very simple fact. Sound is a wave. So you can use everything you know about waves to explain sound.

## Characteristics of a sound wave

Since sound is a wave, we can relate the properties of sound to the properties of a wave. The basic properties of sound are: pitch, loudness and tone.

## Pitch

The frequency of a sound wave is what your ear understands as pitch. A higher frequency sound has a higher pitch, and a lower frequency sound has a lower pitch. In [link] sound A has a higher pitch than sound B. For instance, the chirp of a bird would have a high pitch, but the roar of a lion would have a low pitch.

The human ear can detect a wide range of frequencies. Frequencies from 20 to 20 000 Hz are audible to the human ear. Any sound with a frequency below 20 Hz is known as an infrasound and any sound with a frequency above 20 000 Hz is known as an ultrasound .

[link] lists the hearing ranges of some common animals compared to humans.

 lower frequency (Hz) upper frequency (Hz) Humans 20 20 000 Dogs 50 45 000 Cats 45 85 000 Bats 20 120 000 Dolphins 0,25 200 000 Elephants 5 10 000

## Investigation : range of wavelengths

Using the information given in [link] , calculate the lower and upper wavelengths that each species can hear. Assume the speed of sound in air is $344\phantom{\rule{2pt}{0ex}}\mathrm{m}·\mathrm{s}{}^{-1}$ .

## Loudness

The amplitude of a sound wave determines its loudness or volume. A larger amplitude means a louder sound, and a smaller amplitude means a softer sound. In [link] sound C is louder than sound B. The vibration of a source sets the amplitude of a wave. It transmits energy into the medium through its vibration. More energetic vibration corresponds to larger amplitude. The molecules move back and forth more vigorously.

The loudness of a sound is also determined by the sensitivity of the ear. The human ear is more sensitive to some frequencies than to others. The volume we receive thus depends on both the amplitude of a sound wave and whether its frequency lies in a region where the ear is more or less sensitive.

## Tone

Tone is a measure of the quality of the sound wave. For example, the quality of the sound produced in a particular musical instruments depends on which harmonics are superposed and in which proportions. The harmonics are determined by the standing waves that are produced in the instrument. For general interest see Physics of music , which explains the physics of music in greater detail.

The quality (timbre) of the sound heard depends on the pattern of the incoming vibrations, i.e. the shape of the sound wave. The more irregular the vibrations, the more jagged is the shape of the sound wave and the harsher is the sound heard.

## Speed of sound

The speed of sound depends on the medium the sound is travelling in. Sound travels faster in solids than in liquids, and faster in liquids than in gases. This is because the density of solids is higher than that of liquids which means that the particles are closer together. Sound can be transmitted more easily.

The speed of sound also depends on the temperature of the medium. The hotter the medium is, the faster its particles move and therefore the quicker the sound will travel through the medium. When we heat a substance, the particles in that substance have more kinetic energy and vibrate or move faster. Sound can therefore be transmitted more easily and quickly in hotter substances.

Sound waves are pressure waves. The speed of sound will therefore be influenced by the pressure of the medium through which it is travelling. At sea level the air pressure is higher than high up on a mountain. Sound will travel faster at sea level where the air pressure is higher than it would at places high above sea level.

Speed of sound
The speed of sound in air, at sea level, at a temperature of $21{}^{\circ }\mathrm{C}$ and under normal atmospheric conditions, is $344\phantom{\rule{2pt}{0ex}}\mathrm{m}·\mathrm{s}{}^{-1}$ .

## Sound frequency and amplitude

Study the following diagram representing a musical note. Redraw the diagram for a note

1. with a higher pitch
2. that is louder
3. that is softer

anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
The fundamental frequency of a sonometer wire streached by a load of relative density 's'are n¹ and n² when the load is in air and completly immersed in water respectively then the lation n²/na is
Properties of longitudinal waves