# 11.6 Rational functions and the laplace transform

 Page 1 / 1
This module will introduce rational functions and describe some of their properties. In particular, it will discuss how rational functions relate to the Laplace and provide a useful tool for characterizing LTI systems.

## Introduction

When dealing with operations on polynomials, the term rational function is a simple way to describe a particular relationship between two polynomials.

rational function
For any two polynomials, A and B, their quotient is called a rational function.

## Properties of rational functions

In order to see what makes rational functions special, let us look at some of their basic properties and characteristics.If you are familiar with rational functions and basic algebraic properties, skip to the next section to see howrational functions are useful when dealing with the Laplace transform.

## Roots

To understand many of the following characteristics of a rational function, one must begin by finding the roots ofthe rational function. In order to do this, let us factor both of the polynomials so that the roots can be easily determined.Like all polynomials, the roots will provide us with information on many key properties. The function belowshows the results of factoring the above rational function, [link] .

$f(x)=\frac{(x+2)(x-2)}{(2x+3)(x-1)}$

Thus, the roots of the rational function are as follows:

Roots of the numerator are: $\{-2, 2\}$

Roots of the denominator are: $\{-3, 1\}$

In order to understand rational functions, it is essential to know and understand the roots that make up the rationalfunction.

## Discontinuities

Because we are dealing with division of two polynomials, we must be aware of the values of the variable that will causethe denominator of our fraction to be zero. When this happens, the rational function becomes undefined, i.e. we have a discontinuity in the function. Because we have already solved for our roots, itis very easy to see when this occurs. When the variable in the denominator equals any of the roots of the denominator,the function becomes undefined.

Continuing to look at our rational function above, [link] , we can see that the function will have discontinuities at the followingpoints: $x=\{-3, 1\}()$

In respect to the Cartesian plane, we say that the discontinuities are the values along the x-axis where thefunction is undefined. These discontinuities often appear as vertical asymptotes on the graph to represent the values where the function is undefined.

## Domain

Using the roots that we found above, the domain of the rational function can be easily defined.

domain
The group, or set, of values that are defined by a given function.

## Intercepts

The x-intercept is defined as the point(s) where $f(x)$ , i.e. the output of the rational functions, equals zero. Because we have alreadyfound the roots of the equation this process is very simple. From algebra, we know that the output will be zero wheneverthe numerator of the rational function is equal to zero. Therefore, the function will have an x-intercept wherever $x$ equals one of the roots of the numerator.

The y-intercept occurs whenever $x$ equals zero. This can be found by setting all the values of $x$ equal to zero and solving the rational function.

## Rational functions and the laplace transform

Rational functions often result when the Laplace transform is used to compute transfer functions for LTI systems. When using the Laplace transform to solve linear constant coefficient ordinary differential equations, partial fraction expansions of rational functions prove particularly useful. The roots of the polynomials in the numerator and denominator of the transfer function play an important role in describing system behavior. The roots of the polynomial in the numerator produce zeros of the transfer function where the system produces no output for an input of that complex frequency. The roots of the polynomial in the denominator produce poles of the transfer function where the system has natural frequencies of oscillation.

## Summary

Once we have used our knowledge of rational functions to find its roots, we can manipulate a Laplace transform in a number of usefulways. We can apply this knowledge by representing an LTI system graphically through a pole-zero plot for analysis or design.

where we get a research paper on Nano chemistry....?
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
Got questions? Join the online conversation and get instant answers!