<< Chapter < Page Chapter >> Page >
Describes Laplace transforms.


The Laplace transform is a generalization of the Continuous-Time Fourier Transform . It is used because the CTFT does not converge/exist for many important signals, and yet it does for the Laplace-transform (e.g., signals with infinite l 2 norm). It is also used because it is notationally cleaner than the CTFT. However, instead of using complex exponentials of the form ω t , with purely imaginary parameters, the Laplace transform uses the more general, s t , where s σ ω is complex, to analyze signals in terms of exponentially weighted sinusoids.

The laplace transform

Bilateral laplace transform pair

Although Laplace transforms are rarely solved in practice using integration ( tables and computers ( e.g. Matlab) are much more common), we will provide the bilateral Laplace transform pair here for purposes of discussion and derivation. These define the forward and inverse Laplace transformations. Notice the similarities between the forwardand inverse transforms. This will give rise to many of the same symmetries found in Fourier analysis .

Laplace transform

F s t f t s t

Inverse laplace transform

f t 1 2 s c c F s s t

We have defined the bilateral Laplace transform. There is also a unilateral Laplace transform ,
F s t 0 f t s t
which is useful for solving the difference equations with nonzero initial conditions. This is similar to the unilateral Z Transform in Discrete time.

Relation between laplace and ctft

Taking a look at the equations describing the Z-Transform and the Discrete-Time Fourier Transform:

Continuous-time fourier transform

Ω t f t Ω t

Laplace transform

F s t f t s t
We can see many similarities; first, that :
Ω F s
for all Ω s

the CTFT is a complex-valued function of a real-valued variable ω (and 2 periodic). The Z-transform is a complex-valued function of a complex valued variable z.


Visualizing the laplace transform

With the Fourier transform, we had a complex-valued function of a purely imaginary variable , F ω . This was something we could envision with two 2-dimensional plots (real and imaginary parts or magnitude andphase). However, with Laplace, we have a complex-valued function of a complex variable . In order to examine the magnitude and phase or real andimaginary parts of this function, we must examine 3-dimensional surface plots of each component.

Real and imaginary sample plots

The Real part of H s
The Imaginary part of H s
Real and imaginary parts of H s are now each 3-dimensional surfaces.

Magnitude and phase sample plots

The Magnitude of H s
The Phase of H s
Magnitude and phase of H s are also each 3-dimensional surfaces. This representation is more common than real and imaginary parts.

While these are legitimate ways of looking at a signal in the Laplace domain, it is quite difficult to draw and/or analyze.For this reason, a simpler method has been developed. Although it will not be discussed in detail here, the methodof Poles and Zeros is much easier to understand and is the way both the Laplace transform and its discrete-time counterpart the Z-transform are represented graphically.

Using a computer to find the laplace transform

Using a computer to find Laplace transforms is relatively painless. Matlab has two functions, laplace and ilaplace , that are both part of the symbolic toolbox, and will find the Laplace and inverseLaplace transforms respectively. This method is generally preferred for more complicated functions. Simpler and morecontrived functions are usually found easily enough by using tables .

Laplace transform definition demonstration

Interact (when online) with a Mathematica CDF demonstrating the Laplace Transform. To Download, right-click and save target as .cdf.

Interactive demonstrations

Khan lecture on laplace

See the attached video on the basics of the Unilateral Laplace Transform from Khan Academy


The laplace transform proves a useful, more general form of the Continuous Time Fourier Transform. It applies equally well to describing systems as well as signals using the eigenfunction method, and to describing a larger class of signals better described using the pole-zero method.

Questions & Answers

what is math number
Tric Reply
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
Sidiki Reply
Need help solving this problem (2/7)^-2
Simone Reply
what is the coefficient of -4×
Mehri Reply
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
Alfred Reply
An investment account was opened with an initial deposit of $9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years?
Kala Reply
lim x to infinity e^1-e^-1/log(1+x)
given eccentricity and a point find the equiation
Moses Reply
12, 17, 22.... 25th term
Alexandra Reply
12, 17, 22.... 25th term
College algebra is really hard?
Shirleen Reply
Absolutely, for me. My problems with math started in First grade...involving a nun Sister Anastasia, bad vision, talking & getting expelled from Catholic school. When it comes to math I just can't focus and all I can hear is our family silverware banging and clanging on the pink Formica table.
I'm 13 and I understand it great
I am 1 year old but I can do it! 1+1=2 proof very hard for me though.
Not really they are just easy concepts which can be understood if you have great basics. I am 14 I understood them easily.
hi vedant can u help me with some assignments
find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
I know this work
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
If f(x) = x-2 then, f(3) when 5f(x+1) 5((3-2)+1) 5(1+1) 5(2) 10
how do they get the third part x = (32)5/4
kinnecy Reply
make 5/4 into a mixed number, make that a decimal, and then multiply 32 by the decimal 5/4 turns out to be
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
I'm not sure why it wrote it the other way
I got X =-6
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
is it a question of log
I rally confuse this number And equations too I need exactly help
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
Commplementary angles
Idrissa Reply
im all ears I need to learn
right! what he said ⤴⤴⤴
greetings from Iran
salut. from Algeria
A soccer field is a rectangle 130 meters wide and 110 meters long. The coach asks players to run from one corner to the other corner diagonally across. What is that distance, to the nearest tenths place.
Kimberly Reply
Jeannette has $5 and $10 bills in her wallet. The number of fives is three more than six times the number of tens. Let t represent the number of tens. Write an expression for the number of fives.
August Reply
What is the expressiin for seven less than four times the number of nickels
Leonardo Reply
How do i figure this problem out.
how do you translate this in Algebraic Expressions
linda Reply
why surface tension is zero at critical temperature
I think if critical temperature denote high temperature then a liquid stats boils that time the water stats to evaporate so some moles of h2o to up and due to high temp the bonding break they have low density so it can be a reason
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?