<< Chapter < Page Chapter >> Page >
This module describes discrete time aperiodic signals.


This module describes the type of signals acted on by the Discrete Time Fourier Transform.

Relevant spaces

The Discrete Time Fourier Transform maps arbitrary discrete time signals in l 2 to finite-length, discrete-frequency signals in L 2 0 2 .

Mapping l 2 in the time domain to L 2 0 2 in the frequency domain.

Periodic and aperiodic signals

When a function repeats itself exactly after some given period, or cycle, we say it's periodic . A periodic function can be mathematically defined as:

f n f n m N m m
where N 0 represents the fundamental period of the signal, which is the smallest positive value of N for the signal to repeat. Because of this, you may also see a signal referred to as an N-periodic signal.Any function that satisfies this equation is said to be periodic with period N. Periodic signals in discrete time repeats themselves in each cycle. However, only integers are allowed as time variable in discrete time. We denote signals in such case as f[n], n = ..., -2, -1, 0, 1, 2, ... Here's an example of a discrete-time periodic signal with period N:

Discrete-time periodic signal

Notice the function is the same after a time shift of N

We can think of periodic functions (with period N ) two different ways:

  1. as functions on all of
    discrete time periodic function over all of where f n 0 f n 0 N
  2. or, we can cut out all of the redundancy, and think of them as functions on an interval 0 N (or, more generally, a a N ). If we know the signal is N-periodic then all the information of the signal is captured by the above interval.
    Remove the redundancy of the period function so that f n is undefined outside 0 N .

An aperiodic DT function, however, f n does not repeat for any N ; i.e. there exists no N such that this equation holds. This broader class of signals can only be acted upon by the DTFT.

Suppose we have such an aperiodic function f n . We can construct a periodic extension of f n called f No n , where f n is repeated every N 0 seconds. If we take the limit as N 0 , we obtain a precise model of an aperiodic signal for which all rules that govern periodic signals can be applied, including Fourier Analysis (with an important modification). For more detail on this distinction, see the module on the Discete Time Fourier Transform .

Aperiodic signal demonstration

Click on the above thumbnail image (when online) to download an interactive Mathematica Player testing Periodic versus Aperiodic Signals. To download, right-click and save as .cdf.


A discrete periodic signal is completely defined by its values in one period, such as the interval [0,N].Any aperiodic signal can be defined as an infinite sum of periodic functions, a useful definition that makes it possible to use Fourier Analysis on it by assuming all frequencies are present in the signal.

Questions & Answers

anyone know any internet site where one can find nanotechnology papers?
Damian Reply
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?