Continuous time systems

 Page 1 / 1
Describes continuous time systems.

Introduction

As you already now know, a continuous time system operates on a continuous time signal input and produces a continuous time signal output. There are numerous examples of useful continuous time systems in signal processing as they essentially describe the world around us. The class of continuous time systems that are both linear and time invariant, known as continuous time LTI systems, is of particular interest as the properties of linearity and time invariance together allow the use of some of the most important and powerful tools in signal processing.

Linearity and time invariance

A system $H$ is said to be linear if it satisfies two important conditions. The first, additivity, states for every pair of signals $x,y$ that $H\left(x+y\right)=H\left(x\right)+H\left(y\right)$ . The second, homogeneity of degree one, states for every signal $x$ and scalar $a$ we have $H\left(ax\right)=aH\left(x\right)$ . It is clear that these conditions can be combined together into a single condition for linearity. Thus, a system is said to be linear if for every signals $x,y$ and scalars $a,b$ we have that

$H\left(ax+by\right)=aH\left(x\right)+bH\left(y\right).$

Linearity is a particularly important property of systems as it allows us to leverage the powerful tools of linear algebra, such as bases, eigenvectors, and eigenvalues, in their study.

A system $H$ is said to be time invariant if a time shift of an input produces the corresponding shifted output. In other, more precise words, the system $H$ commutes with the time shift operator ${S}_{T}$ for every $T\in \mathbb{R}$ . That is,

${S}_{T}H=H{S}_{T}.$

Time invariance is desirable because it eases computation while mirroring our intuition that, all else equal, physical systems should react the same to identical inputs at different times.

When a system exhibits both of these important properties it allows for a more straigtforward analysis than would otherwise be possible. As will be explained and proven in subsequent modules, computation of the system output for a given input becomes a simple matter of convolving the input with the system's impulse response signal. Also proven later, the fact that complex exponential are eigenvectors of linear time invariant systems will enable the use of frequency domain tools such as the various Fouier transforms and associated transfer functions, to describe the behavior of linear time invariant systems.

Consider the system $H$ in which

$H\left(f\left(t\right)\right)=2f\left(t\right)$

for all signals $f$ . Given any two signals $f,g$ and scalars $a,b$

$H\left(af\left(t\right)+bg\left(t\right)\right)\right)=2\left(af\left(t\right)+bg\left(t\right)\right)=a2f\left(t\right)+b2g\left(t\right)=aH\left(f\left(t\right)\right)+bH\left(g\left(t\right)\right)$

for all real $t$ . Thus, $H$ is a linear system. For all real $T$ and signals $f$ ,

${S}_{T}\left(H\left(f\left(t\right)\right)\right)={S}_{T}\left(2f\left(t\right)\right)=2f\left(t-T\right)=H\left(f\left(t-T\right)\right)=H\left({S}_{T}\left(f\left(t\right)\right)\right)$

for all real $t$ . Thus, $H$ is a time invariant system. Therefore, $H$ is a linear time invariant system.

Differential equation representation

It is often useful to to describe systems using equations involving the rate of change in some quantity. For continuous time systems, such equations are called differential equations. One important class of differential equations is the set of linear constant coefficient ordinary differential equations, which are described in more detail in subsequent modules.

Consider the series RLC circuit shown in [link] . This system can be modeled using differential equations. We can use the voltage equations for each circuit element and Kirchoff's voltage law to write a second order linear constant coefficient differential equation describing the charge on the capacitor.

The voltage across the battery is simply $V$ . The voltage across the capacitor is $\frac{1}{C}q$ . The voltage across the resistor is $R\frac{dq}{dt}$ . Finally, the voltage across the inductor is $L\frac{{d}^{2}q}{d{t}^{2}}$ . Therefore, by Kirchoff's voltage law, it follows that

$L\frac{{d}^{2}q}{d{t}^{2}}+R\frac{dq}{dt}+\frac{1}{C}q=V.$

Continuous time systems summary

Many useful continuous time systems will be encountered in a study of signals and systems. This course is most interested in those that demonstrate both the linearity property and the time invariance property, which together enable the use of some of the most powerful tools of signal processing. It is often useful to describe them in terms of rates of change through linear constant coefficient ordinary differential equations.

Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Got questions? Join the online conversation and get instant answers! By Anonymous User By Abishek Devaraj By Sebastian Sieczko...   By  By  