<< Chapter < Page Chapter >> Page >
This module is part of a collection of modules that address engineering applications of PreCalculus. The collection is intended for use by students enrolled in a special section of MATH 1508 (PreCalculus) for preengineers at the University of Texas at El Paso.

Complex numbers

Introduction

It is essential that engineers master the concept of complex numbers because the important role that complex numbers play in a variety of application areas. In this module applications in the field of electric circuits are provided.

Alternating current (ac) electric circuits

Earlier we introduced a number of components that are typically found in common electric circuits. These included voltage sources, current sources and resistors. We also observed that the behavior of an electric circuit could be predicted by using several laws from Physics, including Ohm’s Law and Kirchoff’s Laws.

In this laboratory exercise, we will introduce two additional components of electric circuits: the inductor and the capacitor. These elements are typically found in electric circuits which involve sinusoidally varying voltage or current sources. These circuits are called alternating current or AC circuits. AC circuits abound in the physical world. The voltage and current that power household appliances comes from AC sources.

Figure 1 shows the plot for a sinusoidally varying waveform that represents the output of an AC voltage source. Such a waveform could also be used to represent the current that is supplied by an AC current source. It is important to note that the waveform has a repetitive or periodic nature.

Sketch of a sinusoidal waveform.

In the figure, we note that the amount of time that occurs between successive maxima of the sinusoidal waveform is equal to the period . The angular frequency of the waveform is denoted by the symbol ω and is defined in terms of the period by the equation

ω = 2 π T rad / s size 12{ω= { {2`π} over {T} } ` ital "rad"/s} {}

If we denote the amplitude as V max , then we can express the sinusoidal waveform for the voltage mathematically as

v ( t ) = V max cos ( ω t + θ v ) size 12{v \( t \) =V rSub { size 8{"max"} } "cos" \( ω`t+θ rSub { size 8{v} } \) } {}

Here the instantaneous value of the voltage is measured in the units volts. The term θ v is called the phase angle of the sinusoidal waveform. It is measured in degrees. Its usage and importance in the analysis of AC circuits will be discussed later in the course during the study of trigonometry.

Inductors and capacitors are found in circuits of all types and designs, so their understanding is critical to the education of an engineer or scientist. One important distinction between resistors and these two new components (inductors and capacitors) is that they are analyzed using different mathematic techniques. In the case of a resistor, it was quite easy to determine the relationship between the current, voltage and resistance present in a circuit by means of simple algebra. In the case of the inductor and the capacitor, we will see that we must expand our knowledge of mathematics particulary in the are of complex numbers to analyze circuits that contain inductors and capacitors.

Questions & Answers

how can chip be made from sand
Eke Reply
are nano particles real
Missy Reply
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
Lohitha
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Can someone give me problems that involes radical expressions like area,volume or motion of pendulum with solution
BUGAL Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Math 1508 (laboratory) engineering applications of precalculus. OpenStax CNX. Aug 24, 2011 Download for free at http://cnx.org/content/col11337/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Math 1508 (laboratory) engineering applications of precalculus' conversation and receive update notifications?

Ask