# 30.8 Quantum numbers and rules  (Page 2/10)

 Page 2 / 10
${L}_{z}={m}_{l}\frac{h}{2\pi }\phantom{\rule{1.00em}{0ex}}\left({m}_{l}=-l,-l+1, ...,\phantom{\rule{0.25em}{0ex}}-1, 0, 1, ...\phantom{\rule{0.25em}{0ex}}l-1,\phantom{\rule{0.25em}{0ex}}l\right)\text{,}$

where ${L}_{z}$ is the $z$ -component of the angular momentum and ${m}_{l}$ is the angular momentum projection quantum number. The rule in parentheses for the values of ${m}_{l}$ is that it can range from $-l$ to $l$ in steps of one. For example, if $l=2$ , then ${m}_{l}$ can have the five values –2, –1, 0, 1, and 2. Each ${m}_{l}$ corresponds to a different energy in the presence of a magnetic field, so that they are related to the splitting of spectral lines into discrete parts, as discussed in the preceding section. If the $z$ -component of angular momentum can have only certain values, then the angular momentum can have only certain directions, as illustrated in [link] . The component of a given angular momentum along the z -axis (defined by the direction of a magnetic field) can have only certain values; these are shown here for l = 1 , for which m l = − 1, 0, and +1 . The direction of L is quantized in the sense that it can have only certain angles relative to the z -axis.

## What are the allowed directions?

Calculate the angles that the angular momentum vector $\mathbf{\text{L}}$ can make with the $z$ -axis for $l=1$ , as illustrated in [link] .

Strategy

[link] represents the vectors $\mathbf{\text{L}}$ and ${\mathbf{\text{L}}}_{z}$ as usual, with arrows proportional to their magnitudes and pointing in the correct directions. $\mathbf{\text{L}}$ and ${\mathbf{\text{L}}}_{z}$ form a right triangle, with $\mathbf{L}$ being the hypotenuse and ${\mathbf{\text{L}}}_{z}$ the adjacent side. This means that the ratio of ${\mathbf{L}}_{z}$ to $\mathbf{L}$ is the cosine of the angle of interest. We can find $\mathbf{\text{L}}$ and ${\mathbf{\text{L}}}_{z}$ using $L=\sqrt{l\left(l+1\right)}\frac{h}{2\pi }$ and ${L}_{z}=m\frac{h}{2\pi }$ .

Solution

We are given $l=1$ , so that ${m}_{l}$ can be +1, 0, or −1. Thus $L$ has the value given by $L=\sqrt{l\left(l+1\right)}\frac{h}{2\pi }$ .

$L=\frac{\sqrt{l\left(l+1\right)}h}{2\pi }=\frac{\sqrt{2}h}{2\pi }$

${L}_{z}$ can have three values, given by ${L}_{z}={m}_{l}\frac{h}{2\pi }$ .

${L}_{z}={m}_{l}\frac{h}{2\pi }=\left\{\begin{array}{cccc}\phantom{\rule{0.25em}{0ex}}\frac{h}{2\pi },& \phantom{\rule{0.25em}{0ex}}{m}_{l}& =& +1\phantom{\rule{0.25em}{0ex}}\\ \phantom{\rule{0.25em}{0ex}}0,\phantom{\rule{0.25em}{0ex}}& {m}_{l}& =& 0\phantom{\rule{0.25em}{0ex}}\\ -\frac{h}{2\pi },& \phantom{\rule{0.25em}{0ex}}{m}_{l}& =& -1\end{array}$

As can be seen in [link] , $cos\phantom{\rule{0.25em}{0ex}}\theta ={\text{L}}_{z}\text{/L,}$ and so for ${m}_{l}=+1$ , we have

$\text{cos}\phantom{\rule{0.25em}{0ex}}{\theta }_{1}=\frac{{L}_{Z}}{L}=\frac{\frac{h}{2\pi }}{\frac{\sqrt{2}h}{2\pi }}=\frac{1}{\sqrt{2}}=0\text{.}\text{707.}$

Thus,

${\theta }_{1}={\text{cos}}^{-1}\text{0.707}=\text{45}\text{.}0º.$

Similarly, for ${m}_{l}=0$ , we find $\text{cos}\phantom{\rule{0.25em}{0ex}}{\theta }_{2}=0$ ; thus,

${\theta }_{2}={\text{cos}}^{-1}0=\text{90}\text{.}0º.$

And for ${m}_{l}=-1$ ,

$\text{cos}\phantom{\rule{0.25em}{0ex}}{\theta }_{3}=\frac{{L}_{Z}}{L}=\frac{-\frac{h}{2\pi }}{\frac{\sqrt{2}h}{2\pi }}=-\frac{1}{\sqrt{2}}=-0\text{.}\text{707,}$

so that

${\theta }_{3}={\text{cos}}^{-1}\left(-0\text{.}\text{707}\right)=\text{135}\text{.}0º.$

Discussion

The angles are consistent with the figure. Only the angle relative to the $z$ -axis is quantized. $L$ can point in any direction as long as it makes the proper angle with the $z$ -axis. Thus the angular momentum vectors lie on cones as illustrated. This behavior is not observed on the large scale. To see how the correspondence principle holds here, consider that the smallest angle ( ${\theta }_{\text{1}}$ in the example) is for the maximum value of ${m}_{l}=0$ , namely ${m}_{l}=l$ . For that smallest angle,

$\text{cos}\phantom{\rule{0.25em}{0ex}}\theta =\frac{{L}_{z}}{L}=\frac{l}{\sqrt{l\left(l+1\right)}}\text{,}$

which approaches 1 as $l$ becomes very large. If $\text{cos}\phantom{\rule{0.25em}{0ex}}\theta =1$ , then $\theta =0º$ . Furthermore, for large $l$ , there are many values of ${m}_{l}$ , so that all angles become possible as $l$ gets very large.

## Intrinsic spin angular momentum is quantized in magnitude and direction

There are two more quantum numbers of immediate concern. Both were first discovered for electrons in conjunction with fine structure in atomic spectra. It is now well established that electrons and other fundamental particles have intrinsic spin , roughly analogous to a planet spinning on its axis. This spin is a fundamental characteristic of particles, and only one magnitude of intrinsic spin is allowed for a given type of particle. Intrinsic angular momentum is quantized independently of orbital angular momentum. Additionally, the direction of the spin is also quantized. It has been found that the magnitude of the intrinsic (internal) spin angular momentum    , $S$ , of an electron is given by

#### Questions & Answers

what is physics
Rhema Reply
a15kg powerexerted by the foresafter 3second
Firdos Reply
what is displacement
Xolani Reply
movement in a direction
Jason
hello
Hosea
Explain why magnetic damping might not be effective on an object made of several thin conducting layers separated by insulation? can someone please explain this i need it for my final exam
anas Reply
Hi
saeid
hi
Yimam
What is thê principle behind movement of thê taps control
Oluwakayode Reply
while
Hosea
what is atomic mass
thomas Reply
this is the mass of an atom of an element in ratio with the mass of carbon-atom
Chukwuka
show me how to get the accuracies of the values of the resistors for the two circuits i.e for series and parallel sides
Jesuovie Reply
Explain why it is difficult to have an ideal machine in real life situations.
Isaac Reply
tell me
Promise
what's the s . i unit for couple?
Promise
its s.i unit is Nm
Covenant
Force×perpendicular distance N×m=Nm
Oluwakayode
İt iş diffucult to have idêal machine because of FRİCTİON definitely reduce thê efficiency
Oluwakayode
if the classica theory of specific heat is valid,what would be the thermal energy of one kmol of copper at the debye temperature (for copper is 340k)
Zaharadeen Reply
can i get all formulas of physics
BPH Reply
yes
haider
what affects fluid
Doreen Reply
pressure
Oluwakayode
Dimension for force MLT-2
Promise Reply
what is the dimensions of Force?
Osueke Reply
how do you calculate the 5% uncertainty of 4cm?
melia Reply
4cm/100×5= 0.2cm
haider
how do you calculate the 5% absolute uncertainty of a 200g mass?
melia Reply
= 200g±(5%)10g
haider
use the 10g as the uncertainty?
melia
which topic u discussing about?
haider
topic of question?
haider
the relationship between the applied force and the deflection
melia
sorry wrong question i meant the 5% uncertainty of 4cm?
melia
its 0.2 cm or 2mm
haider
thank you
melia
Hello group...
Chioma
hi
haider
well hello there
sean
hi
Noks
hii
Chibueze
10g
Olokuntoye
0.2m
Olokuntoye
hi guys
thomas

### Read also:

#### Get Jobilize Job Search Mobile App in your pocket Now!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications? By By OpenStax By OpenStax By Jonathan Long By Donyea Sweets By OpenStax By Gerr Zen By Ann Schlosser By Anindyo Mukhopadhyay By OpenStax By OpenStax