<< Chapter < Page Chapter >> Page >

Time of occurrence statistics

To derive the multivariate distribution of W , we use the count statistics and the independence properties of the Poisson process. Thedensity we seek satisfies v w 1 w 1 1 v w n w n n p W n v W 1 w 1 w 1 1 W n w n w n n The expression on the right equals the probability that noevents occur in t 1 w 1 , one event in w 1 w 1 1 , no event in w 1 1 w 2 , etc. Because of the independence of event occurrence in these disjoint intervals, we can multiplytogether the probability of these event occurrences, each of which is given by the count statistics. W 1 w 1 w 1 1 W n w n w n n t 1 w 1 w 1 w 1 + 1 w 1 w 1 + 1 w 1 + 1 w 2 w 2 w 2 + 2 w 2 w 2 + 2 w n w n + n w n w n + n k 1 n w k k t 1 w n for small k . From this approximation, we find that the joint distribution ofthe first n event times equals

p W n w k 1 n w k t 1 w n t 1 w 1 w 2 w n 0

Sample function density

For Poisson processes, the sample function density describes the joint distribution of counts and event times within aspecified time interval. Thus, it can be written as t 1 t t 2 N t W 1 w 1 W n w n N t 1 , t 2 n p W n w The second term in the product equals the distribution derived previously for the time of occurrence statistics. Theconditional probability equals the probability that no events occur between w n and t 2 ; from the Poisson process's count statistics, this probability equals w n t 2 . Consequently, the sample function density for the Poisson process, be it stationary or not, equals

t 1 t t 2 N t k 1 n w k t 1 t 2


From the probability distributions derived on the previous pages, we can discern many structural properties of thePoisson process. These properties set the stage for delineating other point processes from the Poisson. They, asdescribed subsequently, have much more structure and are much more difficult to handle analytically.

The counting process

The counting process N t is an independent increment process. For a Poisson process, the number of events in disjoint intervals are statistically independent of eachother, meaning that we have an independent increment process. When the Poisson process is stationary, incrementstaken over equi-duration intervals are identically distributed as well as being statistically independent. Twoimportant results obtain from this property. First, the counting process's covariance function K N t u equals 2 t u . This close relation to the Wiener waveform process indicates the fundamental nature of the Poissonprocess in the world of point processes. Note, however, that the Poisson counting process is not continuous almost surely. Second, the sequence of counts forms an ergodic process, meaning wecan estimate the intensity parameter from observations.

The mean and variance of the number of events in an interval can be easily calculated from the Poisson distribution.Alternatively, we can calculate the characteristic function and evaluate its derivatives. The characteristic functionof an increment equals N t 1 , t 2 v v 1 t 1 t 2 The first two moments and variance of an increment of the Poisson process, be it stationary or not, equal

N t 1 , t 2 t 1 t 2
N t 1 , t 2 2 t 1 t 2 t 1 t 2 2 N t 1 , t 2 t 1 t 2 Note that the mean equals the variance here, a trademark of the Poisson process.

Poisson process event times from a markov process

Consider the conditional density p W n | W n - 1 , , W 1 w n | w n - 1 , , w 1 . This density equals the ratio of the event time densitiesfor the n - and ( n 1 )-dimensional event time vectors. Simple substitution yields

w n w n w n - 1 p W n | W n - 1 , , W 1 w n | w n - 1 , , w 1 w n w n - 1 w n
Thus the n th event time depends only on when the n 1 th event occurs, meaning that we have a Markov process. Note that event times are ordered: the n th event must occur after the n 1 th , etc. Thus, the values of this Markov process keep increasing, meaning that from this viewpoint, the eventtimes form a nonstationary Markovian sequence. When the process is stationary, the evolutionary density isexponential. It is this special form of event occurence time density that defines a Poisson process.

Interevent intervals in a poisson process form a white sequence.

Exploiting the previous property, the duration of the n th interval n w n w n - 1 does not depend on the lengths of previous (or future) intervals. Consequently, the sequence of intereventintervals forms a "white" sequence. The sequence may not be identically distributed unless the process is stationary.In the stationary case, interevent intervals are truly white - they form an IID sequence - and have an exponentialdistribution.

0 p n 0 0
To show that the exponential density for a white sequence corresponds to the most "random" distribution, Parzen proved that the ordered times of n events sprinkled independently and uniformly over a given interval form astationary Poisson process. If the density of event sprinkling is not uniform, the resulting ordered timesconstitute a nonstationary Poisson process with an intensity proportional to the sprinkling density.

Doubly stochastic poisson processes

Here, the intensity t equals a sample function drawn from some waveform process. In waveform processes, the analogous concept does not have nearly the impact it does here. Because intensitywaveforms must be non-negative, the intensity process must be nonzero mean and non-Gaussian. The authors shall assume throughout that the intensityprocess is stationary for simplicity. This model arises in those situations in which the event occurrence rate clearlyvaries unpredictably with time. Such processes have the property that the variance-to-mean ratio of the number ofevents in any interval exceeds one. In the process of deriving this last property, we illustrate the typical wayof analyzing doubly stochastic processes: Condition on the intensity equaling a particular sample function, use thestatistical characteristics of nonstationary Poisson processes, then "average" with respect to the intensityprocess. To calculate the expected number N t 1 , t 2 of events in an interval, we use conditional expected values:

N t 1 , t 2 t t 1 t t 2 N t 1 , t 2 t 1 t 2 t 2 t 1 t
This result can also be written as the expected value of the integrated intensity: N t 1 , t 2 t 1 t 2 . Similar calculations yield the increment's second moment and variance. N t 1 , t 2 2 t 1 t 2 t 1 t 2 2 N t 1 , t 2 t 1 t 2 t 1 t 2 Using the last result, we find that the variance-to-mean ratio in a doubly stochastic process always exceeds unity, equalingone plus the variance-to-mean ratio of the intensity process.

The approach of sample-function conditioning can also be used to derive the density of the number of events occurring in aninterval for a doubly stochastic Poisson process. Conditioned on the occurrence of a sample function, the probability of n events occurring in the interval t 1 t 2 equals ( ) t t 1 t t 2 N t 1 , t 2 n t 1 t 2 n n t 1 t 2 Because t 1 t 2 is a random variable, the unconditional distribution equals this conditional probability averagedwith respect to this random variable's density. This average is known as the Poisson Transform of the randomvariable's density.

N t 1 , t 2 n 0 n n p t 1 t 2

Questions & Answers

how can chip be made from sand
Eke Reply
are nano particles real
Missy Reply
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
has a lot of application modern world
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
Nasa has use it in the 60's, copper as water purification in the moon travel.
nanocopper obvius
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, Statistical signal processing. OpenStax CNX. Dec 05, 2011 Download for free at http://cnx.org/content/col11382/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Statistical signal processing' conversation and receive update notifications?