<< Chapter < Page Chapter >> Page >
  • Integrate functions resulting in inverse trigonometric functions

In this section we focus on integrals that result in inverse trigonometric functions. We have worked with these functions before. Recall from Functions and Graphs that trigonometric functions are not one-to-one unless the domains are restricted. When working with inverses of trigonometric functions, we always need to be careful to take these restrictions into account. Also in Derivatives , we developed formulas for derivatives of inverse trigonometric functions. The formulas developed there give rise directly to integration formulas involving inverse trigonometric functions.

Integrals that result in inverse sine functions

Let us begin this last section of the chapter with the three formulas. Along with these formulas, we use substitution to evaluate the integrals. We prove the formula for the inverse sine integral.

Rule: integration formulas resulting in inverse trigonometric functions

The following integration formulas yield inverse trigonometric functions:


  1. d u a 2 u 2 = sin −1 u a + C

  2. d u a 2 + u 2 = 1 a tan −1 u a + C

  3. d u u u 2 a 2 = 1 a sec −1 u a + C

Proof

Let y = sin −1 x a . Then a sin y = x . Now let’s use implicit differentiation. We obtain

d d x ( a sin y ) = d d x ( x ) a cos y d y d x = 1 d y d x = 1 a cos y .

For π 2 y π 2 , cos y 0 . Thus, applying the Pythagorean identity sin 2 y + cos 2 y = 1 , we have cos y = 1 = sin 2 y . This gives

1 a cos y = 1 a 1 sin 2 y = 1 a 2 a 2 sin 2 y = 1 a 2 x 2 .

Then for a x a , we have

1 a 2 u 2 d u = sin −1 ( u a ) + C .

Evaluating a definite integral using inverse trigonometric functions

Evaluate the definite integral 0 1 d x 1 x 2 .

We can go directly to the formula for the antiderivative in the rule on integration formulas resulting in inverse trigonometric functions, and then evaluate the definite integral. We have

0 1 d x 1 x 2 = sin −1 x | 0 1 = sin −1 1 sin −1 0 = π 2 0 = π 2 .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the antiderivative of d x 1 16 x 2 .

1 4 sin −1 ( 4 x ) + C

Got questions? Get instant answers now!

Finding an antiderivative involving an inverse trigonometric function

Evaluate the integral d x 4 9 x 2 .

Substitute u = 3 x . Then d u = 3 d x and we have

d x 4 9 x 2 = 1 3 d u 4 u 2 .

Applying the formula with a = 2 , we obtain

d x 4 9 x 2 = 1 3 d u 4 u 2 = 1 3 sin −1 ( u 2 ) + C = 1 3 sin −1 ( 3 x 2 ) + C .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the indefinite integral using an inverse trigonometric function and substitution for d x 9 x 2 .

sin −1 ( x 3 ) + C

Got questions? Get instant answers now!

Evaluating a definite integral

Evaluate the definite integral 0 3 / 2 d u 1 u 2 .

The format of the problem matches the inverse sine formula. Thus,

0 3 / 2 d u 1 u 2 = sin −1 u | 0 3 / 2 = [ sin −1 ( 3 2 ) ] [ sin −1 ( 0 ) ] = π 3 .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Integrals resulting in other inverse trigonometric functions

There are six inverse trigonometric functions. However, only three integration formulas are noted in the rule on integration formulas resulting in inverse trigonometric functions because the remaining three are negative versions of the ones we use. The only difference is whether the integrand is positive or negative. Rather than memorizing three more formulas, if the integrand is negative, simply factor out −1 and evaluate the integral using one of the formulas already provided. To close this section, we examine one more formula: the integral resulting in the inverse tangent function.

Finding an antiderivative involving the inverse tangent function

Find an antiderivative of 1 1 + 4 x 2 d x .

Comparing this problem with the formulas stated in the rule on integration formulas resulting in inverse trigonometric functions, the integrand looks similar to the formula for tan −1 u + C . So we use substitution, letting u = 2 x , then d u = 2 d x and 1 / 2 d u = d x . Then, we have

1 2 1 1 + u 2 d u = 1 2 tan −1 u + C = 1 2 tan −1 ( 2 x ) + C .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

find the integral of tan
Gagan Reply
Differentiate each from the first principle. y=x,y=1/x
Abubakar Reply
I need help with calculus. Anyone help me.
Macquitasha Reply
yes
Pradip
formula for radius of curvature
mpradeepa Reply
Hi
Usman
beautiful name usman
Fund
really
Usman
Hi guys
Macquitasha
Hello everyone here
abdulazeez
good day!
joel
hii
Shreya
You are welcome
abdulazeez
shreya
ashif
thanks
joel
hello Sar aapse Kuchh calculate ke sawal poochhne Hain
Sumit
integration seems interesting
Fund Reply
it's like a multiple oparation in just one.
Efrain
Definitely integration
ROHIT Reply
tangent line at a point/range on a function f(x) making f'(x)
Luis
Principles of definite integration?
ROHIT
For tangent they'll usually give an x='s value. In that case, solve for y, keep the ordered pair. then find f(x) prime. plug the given x value into the prime and the solution is the slope of the tangent line. Plug the ordered pair into the derived function in y=mx+b format as x and y to solve for B
Anastasia
parcing an area trough a function f(x)
Efrain
Find the length of the arc y = x^2 over 3 when x = 0 and x = 2.
Jade Reply
integrate x ln dx from 1 to e
Sourav Reply
application of function
azam Reply
how i can need help
azam Reply
what ?
Bunyim
defination of math
azam
application of function
azam
please reply fast
azam
what is a circle
Ronnie
math is the science, logic, shape and arrangement
Boadi
a circle is a hole shape
Jianna
a whole circumference have equal distance from one point
azam
please tell me books which write on function
azam
HE is a Nigerian, wrote the book INTEGRATED MATHEMATICS...CHECK IT OUT!!
Agboke
Woah this is working again
Bruce
show that the f^n f(x)=|x-1| is not differentiable at x=1.
Mohit Reply
is there any solution manual to calculuse 1 for Gilbert Strang ?
Eng Reply
I am beginner
Abdul
I am a beginner
ephraim
l am also beginner
Badar
just began, bois!!
Luis
Hello
abdulazeez
I am newer
abdulazeez
Hey
Bonface
Hi
Jianna
what is mathematics
Henry Reply
logical usage of numbers
Leo
thanks
Henry
you welcome
Leo
what's career can one specialize in by doing pure maths
Lucy
Lucy Omollo...... The World is Yours by specializing in pure math. Analytics, Financial engineering ,programming, education, combinatorial mathematics, Game Theory. your skill-set will be like water a necessary element of survival.
David
***onetonline.org/find/descriptor/result/1.A.1.c.1
Bruce
mathematics seems to be anthropocentric deductive reasoning and a little high order logic. I only say this because I can only find two things going on which is infinitely smaller than 0 and anything over 1
David
More comprehensive list here: ***onetonline.org/find/descriptor/result/1.A.1.c.1?a=1
Bruce
so how can we differentiate inductive reasoning and deductive reasoning
Henry
thanks very much Mr David
Henry
hi everyone
Sabir
is there anyone who can guide me in learning the mathematics easily
Sabir
Hi Sabir first step of learning mathematics is by falling in love with it and secondly, watch videos on simple algebra then read and solved problems on it
Leo
yes sabir just do every time practice that is the solution
Henry
it will be work over to you ,u know how mind work ,it prossed the information easily when u are practising regularly
Henry
in calculas,does a self inverse function exist
Lucy
I'm lost in all functions need help
Jonathan
hello i need help in rate of change
Moises
***questioncove.com/invite/QzOQGp
Bruce
Hello
hassan
hi
MJ
hi
Masaniel
so difficult
Masaniel
hello my name is Charles Christian
Charles Reply
Hello Charles
Jianna
Hi! I am Dante
Dante
Hi! I'm ashwini
ashwini
halĺo
Roben
Hi
Leo
hello leo
Agboke
can anyone prove why AU(BnC)=(AUB)n(AUC)
Agboke
this one it can't be proven these are assumption
Henry
hello agboke there is no proof for such
Leo
Hi
Adewale
hi this is wasim
wasim
can anybody put me through flowchart and algorithm here
Agboke
download introductory books and read
Leo
***soundcloud.com/etroid-izza/sets/sadbwoicarepackage
Luis
music while you math
Luis
dy/dx= 1-cos4x/sin4x
Alma Reply
what is the derivatives of 1-cos4x/sin4x
Alma
what is the derivate of Sec2x
Johar
d/dx(sec(2 x)) = 2 tan(2 x) sec(2 x)
AYAN
who knows more about mathematical induction?
Agboke
who know anything about the whole calculus thing 🤔 its killing me 😶
matbakh
Yes
Dadi
hii
Gagan

Get the best Calculus volume 1 course in your pocket!





Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask