<< Chapter < Page Chapter >> Page >

Basic integrals

1. u n d u = u n + 1 n + 1 + C , n 1

2. d u u = ln | u | + C

3. e u d u = e u + C

4. a u d u = a u ln a + C

5. sin u d u = −cos u + C

6. cos u d u = sin u + C

7. sec 2 u d u = tan u + C

8. csc 2 u d u = −cot u + C

9. sec u tan u d u = sec u + C

10. csc u cot u d u = −csc u + C

11. tan u d u = ln | sec u | + C

12. cot u d u = ln | sin u | + C

13. sec u d u = ln | sec u + tan u | + C

14. csc u d u = ln | csc u cot u | + C

15. d u a 2 u 2 = sin −1 u a + C

16. d u a 2 + u 2 = 1 a tan −1 u a + C

17. d u u u 2 a 2 = 1 a sec −1 u a + C

Trigonometric integrals

18. sin 2 u d u = 1 2 u 1 4 sin 2 u + C

19. cos 2 u d u = 1 2 u + 1 4 sin 2 u + C

20. tan 2 u d u = tan u u + C

21. cot 2 u d u = cot u u + C

22. sin 3 u d u = 1 3 ( 2 + sin 2 u ) cos u + C

23. cos 3 u d u = 1 3 ( 2 + cos 2 u ) sin u + C

24. tan 3 u d u = 1 2 tan 2 u + ln | cos u | + C

25. cot 3 u d u = 1 2 cot 2 u ln | sin u | + C

26. sec 3 u d u = 1 2 sec u tan u + 1 2 ln | sec u + tan u | + C

27. csc 3 u d u = 1 2 csc u cot u + 1 2 ln | csc u cot u | + C

28. sin n u d u = 1 n sin n 1 u cos u + n 1 n sin n 2 u d u

29. cos n u d u = 1 n cos n 1 u sin u + n 1 n cos n 2 u d u

30. tan n u d u = 1 n 1 tan n 1 u tan n 2 u d u

31. cot n u d u = −1 n 1 cot n 1 u cot n 2 u d u

32. sec n u d u = 1 n 1 tan u sec n 2 u + n 2 n 1 sec n 2 u d u

33. csc n u d u = −1 n 1 cot u csc n 2 u + n 2 n 1 csc n 2 u d u

34. sin a u sin b u d u = sin ( a b ) u 2 ( a b ) sin ( a + b ) u 2 ( a + b ) + C

35. cos a u cos b u d u = sin ( a b ) u 2 ( a b ) + sin ( a + b ) u 2 ( a + b ) + C

36. sin a u cos b u d u = cos ( a b ) u 2 ( a b ) cos ( a + b ) u 2 ( a + b ) + C

37. u sin u d u = sin u u cos u + C

38. u cos u d u = cos u + u sin u + C

39. u n sin u d u = u n cos u + n u n 1 cos u d u

40. u n cos u d u = u n sin u n u n 1 sin u d u

41. sin n u cos m u d u = sin n 1 u cos m + 1 u n + m + n 1 n + m sin n 2 u cos m u d u = sin n + 1 u cos m 1 u n + m + m 1 n + m sin n u cos m 2 u d u

Exponential and logarithmic integrals

42. u e a u d u = 1 a 2 ( a u 1 ) e a u + C

43. u n e a u d u = 1 a u n e a u n a u n 1 e a u d u

44. e a u sin b u d u = e a u a 2 + b 2 ( a sin b u b cos b u ) + C

45. e a u cos b u d u = e a u a 2 + b 2 ( a cos b u + b sin b u ) + C

46. ln u d u = u ln u u + C

47. u n ln u d u = u n + 1 ( n + 1 ) 2 [ ( n + 1 ) ln u 1 ] + C

48. 1 u ln u d u = ln | ln u | + C

Hyperbolic integrals

49. sinh u d u = cosh u + C

50. cosh u d u = sinh u + C

51. tanh u d u = ln cosh u + C

52. coth u d u = ln | sinh u | + C

53. sech u d u = tan −1 | sinh u | + C

54. csch u d u = ln | tanh 1 2 u | + C

55. sech 2 u d u = tanh u + C

56. csch 2 u d u = coth u + C

57. sech u tanh u d u = sech u + C

58. csch u coth u d u = csch u + C

Inverse trigonometric integrals

59. sin −1 u d u = u sin −1 u + 1 u 2 + C

60. cos −1 u d u = u cos −1 u 1 u 2 + C

61. tan −1 u d u = u tan −1 u 1 2 ln ( 1 + u 2 ) + C

62. u sin −1 u d u = 2 u 2 1 4 sin −1 u + u 1 u 2 4 + C

63. u cos −1 u d u = 2 u 2 1 4 cos −1 u u 1 u 2 4 + C

64. u tan −1 u d u = u 2 + 1 2 tan −1 u u 2 + C

65. u n sin −1 u d u = 1 n + 1 [ u n + 1 sin −1 u u n + 1 d u 1 u 2 ] , n 1

66. u n cos −1 u d u = 1 n + 1 [ u n + 1 cos −1 u + u n + 1 d u 1 u 2 ] , n 1

67. u n tan −1 u d u = 1 n + 1 [ u n + 1 tan −1 u u n + 1 d u 1 + u 2 ] , n 1

Integrals involving a 2 + u 2 , a >0

68. a 2 + u 2 d u = u 2 a 2 + u 2 + a 2 2 ln ( u + a 2 + u 2 ) + C

69. u 2 a 2 + u 2 d u = u 8 ( a 2 + 2 u 2 ) a 2 + u 2 a 4 8 ln ( u + a 2 + u 2 ) + C

70. a 2 + u 2 u d u = a 2 + u 2 a ln | a + a 2 + u 2 u | + C

71. a 2 + u 2 u 2 d u = a 2 + u 2 u + ln ( u + a 2 + u 2 ) + C

72. d u a 2 + u 2 = ln ( u + a 2 + u 2 ) + C

73. u 2 d u a 2 + u 2 = u 2 ( a 2 + u 2 ) a 2 2 ln ( u + a 2 + u 2 ) + C

74. d u u a 2 + u 2 = 1 a ln | a 2 + u 2 + a u | + C

75. d u u 2 a 2 + u 2 = a 2 + u 2 a 2 u + C

76. d u ( a 2 + u 2 ) 3 / 2 = u a 2 a 2 + u 2 + C

Integrals involving u 2 a 2 , a >0

77. u 2 a 2 d u = u 2 u 2 a 2 a 2 2 ln | u + u 2 a 2 | + C

78. u 2 u 2 a 2 d u = u 8 ( 2 u 2 a 2 ) u 2 a 2 a 4 8 ln | u + u 2 a 2 | + C

79. u 2 a 2 u d u = u 2 a 2 a cos −1 a | u | + C

80. u 2 a 2 u 2 d u = u 2 a 2 u + ln | u + u 2 a 2 | + C

81. d u u 2 a 2 = ln | u + u 2 a 2 | + C

82. u 2 d u u 2 a 2 = u 2 u 2 a 2 + a 2 2 ln | u + u 2 a 2 | + C

83. d u u 2 u 2 a 2 = u 2 a 2 a 2 u + C

84. d u ( u 2 a 2 ) 3 / 2 = u a 2 u 2 a 2 + C

Integrals involving a 2 u 2 , a >0

85. a 2 u 2 d u = u 2 a 2 u 2 + a 2 2 sin −1 u a + C

86. u 2 a 2 u 2 d u = u 8 ( 2 u 2 a 2 ) a 2 u 2 + a 4 8 sin −1 u a + C

87. a 2 u 2 u d u = a 2 u 2 a ln | a + a 2 u 2 u | + C

88. a 2 u 2 u 2 d u = 1 u a 2 u 2 sin −1 u a + C

89. u 2 d u a 2 u 2 = u u a 2 u 2 + a 2 2 sin −1 u a + C

90. d u u a 2 u 2 = 1 a ln | a + a 2 u 2 u | + C

91. d u u 2 a 2 u 2 = 1 a 2 u a 2 u 2 + C

92. ( a 2 u 2 ) 3 / 2 d u = u 8 ( 2 u 2 5 a 2 ) a 2 u 2 + 3 a 4 8 sin −1 u a + C

93. d u ( a 2 u 2 ) 3 / 2 = u a 2 a 2 u 2 + C

Integrals involving 2 au u 2 , a >0

94. 2 a u u 2 d u = u a 2 2 a u u 2 + a 2 2 cos −1 ( a u a ) + C

95. d u 2 a u u 2 = cos −1 ( a u a ) + C

96. u 2 a u u 2 d u = 2 u 2 a u 3 a 2 6 2 a u u 2 + a 3 2 cos −1 ( a u a ) + C

97. d u u 2 a u u 2 = 2 a u u 2 a u + C

Integrals involving a + bu , a ≠ 0

98. u d u a + b u = 1 b 2 ( a + b u a ln | a + b u | ) + C

99. u 2 d u a + b u = 1 2 b 3 [ ( a + b u ) 2 4 a ( a + b u ) + 2 a 2 ln | a + b u | ] + C

100. d u u ( a + b u ) = 1 a ln | u a + b u | + C

101. d u u 2 ( a + b u ) = 1 a u + b a 2 ln | a + b u u | + C

102. u d u ( a + b u ) 2 = a b 2 ( a + b u ) + 1 b 2 ln | a + b u | + C

103. u d u u ( a + b u ) 2 = 1 a ( a + b u ) 1 a 2 ln | a + b u u | + C

104. u 2 d u ( a + b u ) 2 = 1 b 3 ( a + b u a 2 a + b u 2 a ln | a + b u | ) + C

105. u a + b u d u = 2 15 b 2 ( 3 b u 2 a ) ( a + b u ) 3 / 2 + C

106. u d u a + b u = 2 3 b 2 ( b u 2 a ) a + b u + C

107. u 2 d u a + b u = 2 15 b 3 ( 8 a 2 + 3 b 2 u 2 4 a b u ) a + b u + C

108. d u u a + b u = 1 a ln | a + b u a a + b u + a | + C , if a > 0 = 2 a tan 1 a + b u a + C , if a < 0

109. a + b u u d u = 2 a + b u + a d u u a + b u

110. a + b u u 2 d u = a + b u u + b 2 d u u a + b u

111. u n a + b u d u = 2 b ( 2 n + 3 ) [ u n ( a + b u ) 3 / 2 n a u n 1 a + b u d u ]

112. u n d u a + b u = 2 u n a + b u b ( 2 n + 1 ) 2 n a b ( 2 n + 1 ) u n 1 d u a + b u

113. d u u n a + b u = a + b u a ( n 1 ) u n 1 b ( 2 n 3 ) 2 a ( n 1 ) d u u n 1 a + b u

Questions & Answers

what is Cale nation
Musu Reply
its probably a football leage in kentucky
Luis
what are the 12 theorem of limits
Xhyna Reply
I don't understand the set builder nototation like in this case they've said numbers greater than 1 but less than 5 is there a specific way of reading {x|1<x<5} this because I can't really understand
Ivwananji Reply
x is equivalent also us 1...
Jogimar
a < x < b means x is between a and b which implies x is greater than a but less than b.
Bruce
alright thanks a lot I get it now
Ivwananji
I'm trying to test this to see if I am able to send and receive messages.
Bruce Reply
👍
Jogimar
It's possible
joseph
yes
Waidus
Anyone with pdf tutorial or video should help
joseph
maybe.
Jogimar
hellow gays. is it possible to ask a mathematical question
Michael
What is the derivative of 3x to the negative 3
Wilbur Reply
-3x^-4
Mugen
that's wrong, its -9x^-3
Mugen
Or rather kind of the combination of the two: -9x^(-4) I think. :)
Csaba
-9x-4 (X raised power negative 4=
Simon
-9x-³
Jon
I have 50 rupies I spend as below Spend remain 20 30 15 15 09 06 06 00 ----- ------- 50 51 why one more
Muhsin Reply
Pls Help..... if f(x) =3x+2 what is the value of x whose image is 5
Akanuku Reply
f(x) = 5 = 3x +2 x = 1
x=1
Bra
can anyone teach me how to use synthetic in problem solving
Mark
x=1
Mac
can someone solve Y=2x² + 3 using first principle of differentiation
Rachael Reply
ans 2
Emmanuel
Yes ☺️ Y=2x+3 will be {2(x+h)+ 3 -(2x+3)}/h where the 2x's and 3's cancel on opening the brackets. Then from (2h/h)=2 since we have no h for the limit that tends to zero, I guess that is it....
Philip
Correct
Mohamed
thank you Philip Kotia
Rachael
Welcome
Philip
g(x)=8-4x sqrt of 3 + 2x sqrt of 8 what is the answer?
Sheila
I have no idea what these symbols mean can it be explained in English words
bill Reply
which symbols
John
How to solve lim x squared two=4
Musisi Reply
why constant is zero
Saurabh Reply
Rate of change of a constant is zero because no change occurred
Highsaint
What is the derivative of sin(x + y)=x + y ?
Frendick Reply
_1
Abhay
How? can you please show the solution?
Frendick
neg 1?
muhammad
Solution please?😪
Frendick
find x^2 + cot (xy) =0 Dy/dx
Miss-K Reply
Continuos and discontinous fuctions
Amoding Reply
integrate dx/(1+x) root 1-x square
Raju Reply
Put 1-x and u^2
Ashwini
hi
telugu

Get the best Calculus volume 1 course in your pocket!





Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask