<< Chapter < Page
  Wiskunde graad 7   Page 1 / 1
Chapter >> Page >

Wiskunde

Desimale breuke

Opvoeders afdeling

Memorandum

2.

Temperatuur

Volume

Meting

Afstand

Skale

Geld

Swemmers

Atlete

Motor se Afstandsmeter

Wetenskaplikes

Ingenieurs

3.1 a) 6 100 size 12{ { { size 8{6} } over { size 8{"100"} } } } {}

b) 2 1000 size 12{ { { size 8{2} } over { size 8{"1000"} } } } {}

c) 200

d) 2 10 size 12{ { { size 8{2} } over { size 8{"10"} } } } {}

e) 80

f) 9 1000 size 12{ { { size 8{9} } over { size 8{"1000"} } } } {}

g) 2 000

h) 8 100 size 12{ { { size 8{8} } over { size 8{"100"} } } } {}

i) 5 10 size 12{ { { size 8{5} } over { size 8{"10"} } } } {}

j) 8 1000 size 12{ { { size 8{8} } over { size 8{"1000"} } } } {}

  • a) 9 10 size 12{ { { size 8{9} } over { size 8{"10"} } } } {}

b) 3 10 size 12{ { { size 8{3} } over { size 8{"10"} } } } {} 8 100 size 12{ { { size 8{8} } over { size 8{"100"} } } } {}

c) 8 10 size 12{ { { size 8{8} } over { size 8{"10"} } } } {} 2 100 size 12{ { { size 8{2} } over { size 8{"100"} } } } {} 4 1000 size 12{ { { size 8{4} } over { size 8{"1000"} } } } {}

d) 3 10 size 12{ { { size 8{3} } over { size 8{"10"} } } } {} 8 1000 size 12{ { { size 8{8} } over { size 8{"1000"} } } } {}

5. a) 0,12; 0,18; 0,24; 0,3; 0,36;

0,42; 0,48; 0,54; 0,6; 0,66

b) 0,018; 0,027; 0,036; 0,045;

0,054; 0,063; 0,072; 0,081; 0,09

c) 7,4; 11,1; 14,8; 18,5;

22,2; 25,9; 29,6; 33,3; 37

6. a) 0,8; 1,0; 1,2; 1,4

b) 5,5; 5; 4,5; 4

c) 0,989; 0,986; 0,983;

0,98; 0,977

d) 0,016; 0,02; 0,024;

0,028; 0,032

7. +20 +100 +0,003

+0,3

+0,07 +0,13 +0,05

+0,3

+0,007 +0,12 +0,009

8. a) 1,0

b) 3,2

c) 0,75

d) 4,2

e) 1,4

f) 2,9

g) 3,15

h) 3,42

i) 0,05

j) 4,5

k) 3,98

l) 1,02

m) 2,5

n) 15,6

o) 11,4

Leerders afdeling

Inhoud

Aktiwiteit: desimale breuke [lu 1.1.1, lu 1.3.2, lu 1.7.4, lu 1.10,]

1. Het jy geweet?

Die desimale stelsel het in ongeveer 500 n.C. by die Hindoes in Indië ontstaan. Johannes Kepler, wiskundige in Nederland, het die desimale komma die eerste keer in die vroeë 1600’s gebruik. Voor dit het wiskundiges sirkels of stafies gebruik om desimale breuke aan te toon. John Napier, ’n Skot, was die eerste om in 1617 die desimale punt te gebruik. Engeland en die VSA gebruik steeds vandag ’n punt in plaas van ’n desimale komma.

2. Onthou jy nog?

Verdeel in groepe van vier. Maak ’n lys van waar ons desimale breuke vandag in ons alledaagse lewe gebruik.

3. Kom ons hersien

1 438,576 = 1 000 + 400 + 30 + 8 + 5 10 size 12{ { { size 8{5} } over { size 8{"10"} } } } {} + 7 100 size 12{ { { size 8{7} } over { size 8{"100"} } } } {} + 6 1 000 size 12{ { { size 8{6} } over { size 8{1`"000"} } } } {}

3.1 Skryf nou die waarde van die onderstreepte syfer in elk van die volgende neer:

a) 532,1 6 8 ..................................................

b) 326,43 2 ..................................................

c) 2 91,567 ..................................................

d) 460, 2 31 ..................................................

e) 8 8 6,434 ..................................................

f) 1 467,23 9 ..................................................

g) 2 321,456 ..................................................

h) 3 641,9 8 5 ..................................................

i) 2 634, 5 27 ..................................................

j) 8 139,43 8 ..................................................

3.2 Voltooi die volgende:

Bv. 5,3 = 5 + 3 10 size 12{ { { size 8{3} } over { size 8{"10"} } } } {}

a) 6,9 = 6 + ....................

b) 26,38 = 26 + .................... + ....................

c) 9,824 = 9 + .................... + .................... + ....................

d) 16,308 = 16 + .................... + ....................

4. Werk saam met ’n maat. Maak beurte en tel harop:

a) 3,8 ; 3,9 ; 4 ; 4,1 ; . . . to 8

b) 14 ; 13,5 ; 13 ; 12,5 ; . . . to 6

c) 2,4 ; 2,6 ; 2,8 ; . . . to 7

d) 18,8 ; 18,6 ; 18,4 ; to 10

5. Kan jy nog onthou?

As ons bv. aanhoudend 0,01 (een honderdste) wil bytel met ’n sakrekenaar, programmeer ons dit so: 0,01 + + = = =

a) Programmeer jou sakrekenaar om elke keer 0,06 by te tel en voltooi:

0,06 ; ................. ; ................. ; ................. ; ................. ; ................. ;

................. ; ................. ; ................. ; ................. ; .................

b) Tel elke keer 0,009 by: (programmeer jou sakrekenaar!)

0,009 ; ................. ; ................. ; ................. ; ................. ;

................. ; ................. ; ................. ; ................. ; .................

c) Tel elke keer 3,7 by met behulp van jou sakrekenaar:

3,7 ; ................. ; ................. ; ................. ; ................. ;

................. ; ................. ; ................. ; ................. ; .................

6. Voltooi die volgende SONDER ’n sakrekenaar:

a) 0,2 ; 0,4 ; 0,6 ; ................. ; ................. ; ................. ; .................

b) 7 ; 6,5 ; 6 ; ................. ; ................. ; ................. ; .................

c) 0,998 ; 0,995 ; 0,992 ; ............. ; ............. ; ............ ;........... ; ...........

d) 0,004 ; 0,008 ; 0,012 ; ............. ; ............. ; ............ ;........... ; ...........

7. KOPKRAPPER!

Voltooi die volgende vloeidiagram. (Jy mag jou sakrekenaar gebruik as jy wil!)

8. Kom ons kyk hoe goed vaar jy in die eerste hoofrekentoets! Skryf net die antwoorde neer:

a) 0,7 + 0,3 = .................

b) 2,4 + 0,8 = .................

c) 0,35 + 0,4 = .................

d) 5 – 0,8 = .................

e) 0,8 + 0,6 = .................

f) 3,4 – 0,5 = .................

g) 3,45 – 0,3 = .................

h) 3,45 – 0,03 = .................

i) 2,45 – 2,4 = .................

j) 2,45 + 2,05 = .................

k) 4 – 0,02 = .................

l) 0,38 + 0,64 = .................

m) 1,25 + 1,25 = .................

n) 6,9 + 8,7 = .................

o) 15 – 3,6 = .................

(15)

9. Tyd vir selfassessering

Assessering

Leeruitkomste 1: Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.1: Dit is duidelik wanneer die leerder aan- en terugtel op die volgende maniere:

1.1.1 in desimale intervalle;

Assesseringstandaard 1.3: Dit is duidelik wanneer die leerder die volgende getalle herken, klassifiseer en voorstel sodat dit beskryf en vergelyk kan word:

1.3.2 desimale (tot minstens drie desimale plekke), breuke en persentasies;

Assesseringstandaard 1.7: Dit is duidelik wanneer die leerder skat en bereken deur geskikte bewerkings vir probleme wat die volgende behels, te kies en te gebruik:

1.7.4 optelling, aftrekking;

Assesseringstandaard 1.10: Dit is duidelik wanneer die leerder ‘n verskeidenheid strategieë gebruik om oplossings te kontroleer en die redelikheid daarvan te beoordeel.

Questions & Answers

Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
hi
Loga
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 7. OpenStax CNX. Oct 21, 2009 Download for free at http://cnx.org/content/col11076/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 7' conversation and receive update notifications?

Ask