<< Chapter < Page
  Wiskunde graad 7   Page 1 / 1
Chapter >> Page >

Wiskunde

Desimale breuke

Opvoeders afdeling

Memorandum

2.

Temperatuur

Volume

Meting

Afstand

Skale

Geld

Swemmers

Atlete

Motor se Afstandsmeter

Wetenskaplikes

Ingenieurs

3.1 a) 6 100 size 12{ { { size 8{6} } over { size 8{"100"} } } } {}

b) 2 1000 size 12{ { { size 8{2} } over { size 8{"1000"} } } } {}

c) 200

d) 2 10 size 12{ { { size 8{2} } over { size 8{"10"} } } } {}

e) 80

f) 9 1000 size 12{ { { size 8{9} } over { size 8{"1000"} } } } {}

g) 2 000

h) 8 100 size 12{ { { size 8{8} } over { size 8{"100"} } } } {}

i) 5 10 size 12{ { { size 8{5} } over { size 8{"10"} } } } {}

j) 8 1000 size 12{ { { size 8{8} } over { size 8{"1000"} } } } {}

  • a) 9 10 size 12{ { { size 8{9} } over { size 8{"10"} } } } {}

b) 3 10 size 12{ { { size 8{3} } over { size 8{"10"} } } } {} 8 100 size 12{ { { size 8{8} } over { size 8{"100"} } } } {}

c) 8 10 size 12{ { { size 8{8} } over { size 8{"10"} } } } {} 2 100 size 12{ { { size 8{2} } over { size 8{"100"} } } } {} 4 1000 size 12{ { { size 8{4} } over { size 8{"1000"} } } } {}

d) 3 10 size 12{ { { size 8{3} } over { size 8{"10"} } } } {} 8 1000 size 12{ { { size 8{8} } over { size 8{"1000"} } } } {}

5. a) 0,12; 0,18; 0,24; 0,3; 0,36;

0,42; 0,48; 0,54; 0,6; 0,66

b) 0,018; 0,027; 0,036; 0,045;

0,054; 0,063; 0,072; 0,081; 0,09

c) 7,4; 11,1; 14,8; 18,5;

22,2; 25,9; 29,6; 33,3; 37

6. a) 0,8; 1,0; 1,2; 1,4

b) 5,5; 5; 4,5; 4

c) 0,989; 0,986; 0,983;

0,98; 0,977

d) 0,016; 0,02; 0,024;

0,028; 0,032

7. +20 +100 +0,003

+0,3

+0,07 +0,13 +0,05

+0,3

+0,007 +0,12 +0,009

8. a) 1,0

b) 3,2

c) 0,75

d) 4,2

e) 1,4

f) 2,9

g) 3,15

h) 3,42

i) 0,05

j) 4,5

k) 3,98

l) 1,02

m) 2,5

n) 15,6

o) 11,4

Leerders afdeling

Inhoud

Aktiwiteit: desimale breuke [lu 1.1.1, lu 1.3.2, lu 1.7.4, lu 1.10,]

1. Het jy geweet?

Die desimale stelsel het in ongeveer 500 n.C. by die Hindoes in Indië ontstaan. Johannes Kepler, wiskundige in Nederland, het die desimale komma die eerste keer in die vroeë 1600’s gebruik. Voor dit het wiskundiges sirkels of stafies gebruik om desimale breuke aan te toon. John Napier, ’n Skot, was die eerste om in 1617 die desimale punt te gebruik. Engeland en die VSA gebruik steeds vandag ’n punt in plaas van ’n desimale komma.

2. Onthou jy nog?

Verdeel in groepe van vier. Maak ’n lys van waar ons desimale breuke vandag in ons alledaagse lewe gebruik.

3. Kom ons hersien

1 438,576 = 1 000 + 400 + 30 + 8 + 5 10 size 12{ { { size 8{5} } over { size 8{"10"} } } } {} + 7 100 size 12{ { { size 8{7} } over { size 8{"100"} } } } {} + 6 1 000 size 12{ { { size 8{6} } over { size 8{1`"000"} } } } {}

3.1 Skryf nou die waarde van die onderstreepte syfer in elk van die volgende neer:

a) 532,1 6 8 ..................................................

b) 326,43 2 ..................................................

c) 2 91,567 ..................................................

d) 460, 2 31 ..................................................

e) 8 8 6,434 ..................................................

f) 1 467,23 9 ..................................................

g) 2 321,456 ..................................................

h) 3 641,9 8 5 ..................................................

i) 2 634, 5 27 ..................................................

j) 8 139,43 8 ..................................................

3.2 Voltooi die volgende:

Bv. 5,3 = 5 + 3 10 size 12{ { { size 8{3} } over { size 8{"10"} } } } {}

a) 6,9 = 6 + ....................

b) 26,38 = 26 + .................... + ....................

c) 9,824 = 9 + .................... + .................... + ....................

d) 16,308 = 16 + .................... + ....................

4. Werk saam met ’n maat. Maak beurte en tel harop:

a) 3,8 ; 3,9 ; 4 ; 4,1 ; . . . to 8

b) 14 ; 13,5 ; 13 ; 12,5 ; . . . to 6

c) 2,4 ; 2,6 ; 2,8 ; . . . to 7

d) 18,8 ; 18,6 ; 18,4 ; to 10

5. Kan jy nog onthou?

As ons bv. aanhoudend 0,01 (een honderdste) wil bytel met ’n sakrekenaar, programmeer ons dit so: 0,01 + + = = =

a) Programmeer jou sakrekenaar om elke keer 0,06 by te tel en voltooi:

0,06 ; ................. ; ................. ; ................. ; ................. ; ................. ;

................. ; ................. ; ................. ; ................. ; .................

b) Tel elke keer 0,009 by: (programmeer jou sakrekenaar!)

0,009 ; ................. ; ................. ; ................. ; ................. ;

................. ; ................. ; ................. ; ................. ; .................

c) Tel elke keer 3,7 by met behulp van jou sakrekenaar:

3,7 ; ................. ; ................. ; ................. ; ................. ;

................. ; ................. ; ................. ; ................. ; .................

6. Voltooi die volgende SONDER ’n sakrekenaar:

a) 0,2 ; 0,4 ; 0,6 ; ................. ; ................. ; ................. ; .................

b) 7 ; 6,5 ; 6 ; ................. ; ................. ; ................. ; .................

c) 0,998 ; 0,995 ; 0,992 ; ............. ; ............. ; ............ ;........... ; ...........

d) 0,004 ; 0,008 ; 0,012 ; ............. ; ............. ; ............ ;........... ; ...........

7. KOPKRAPPER!

Voltooi die volgende vloeidiagram. (Jy mag jou sakrekenaar gebruik as jy wil!)

8. Kom ons kyk hoe goed vaar jy in die eerste hoofrekentoets! Skryf net die antwoorde neer:

a) 0,7 + 0,3 = .................

b) 2,4 + 0,8 = .................

c) 0,35 + 0,4 = .................

d) 5 – 0,8 = .................

e) 0,8 + 0,6 = .................

f) 3,4 – 0,5 = .................

g) 3,45 – 0,3 = .................

h) 3,45 – 0,03 = .................

i) 2,45 – 2,4 = .................

j) 2,45 + 2,05 = .................

k) 4 – 0,02 = .................

l) 0,38 + 0,64 = .................

m) 1,25 + 1,25 = .................

n) 6,9 + 8,7 = .................

o) 15 – 3,6 = .................

(15)

9. Tyd vir selfassessering

Assessering

Leeruitkomste 1: Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.1: Dit is duidelik wanneer die leerder aan- en terugtel op die volgende maniere:

1.1.1 in desimale intervalle;

Assesseringstandaard 1.3: Dit is duidelik wanneer die leerder die volgende getalle herken, klassifiseer en voorstel sodat dit beskryf en vergelyk kan word:

1.3.2 desimale (tot minstens drie desimale plekke), breuke en persentasies;

Assesseringstandaard 1.7: Dit is duidelik wanneer die leerder skat en bereken deur geskikte bewerkings vir probleme wat die volgende behels, te kies en te gebruik:

1.7.4 optelling, aftrekking;

Assesseringstandaard 1.10: Dit is duidelik wanneer die leerder ‘n verskeidenheid strategieë gebruik om oplossings te kontroleer en die redelikheid daarvan te beoordeel.

Questions & Answers

how can chip be made from sand
Eke Reply
is this allso about nanoscale material
Almas
are nano particles real
Missy Reply
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Wiskunde graad 7. OpenStax CNX. Oct 21, 2009 Download for free at http://cnx.org/content/col11076/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 7' conversation and receive update notifications?

Ask