<< Chapter < Page
  Wiskunde graad 7   Page 1 / 1
Chapter >> Page >

Wiskunde

Desimale breuke

Opvoeders afdeling

Memorandum

2.

Temperatuur

Volume

Meting

Afstand

Skale

Geld

Swemmers

Atlete

Motor se Afstandsmeter

Wetenskaplikes

Ingenieurs

3.1 a) 6 100 size 12{ { { size 8{6} } over { size 8{"100"} } } } {}

b) 2 1000 size 12{ { { size 8{2} } over { size 8{"1000"} } } } {}

c) 200

d) 2 10 size 12{ { { size 8{2} } over { size 8{"10"} } } } {}

e) 80

f) 9 1000 size 12{ { { size 8{9} } over { size 8{"1000"} } } } {}

g) 2 000

h) 8 100 size 12{ { { size 8{8} } over { size 8{"100"} } } } {}

i) 5 10 size 12{ { { size 8{5} } over { size 8{"10"} } } } {}

j) 8 1000 size 12{ { { size 8{8} } over { size 8{"1000"} } } } {}

  • a) 9 10 size 12{ { { size 8{9} } over { size 8{"10"} } } } {}

b) 3 10 size 12{ { { size 8{3} } over { size 8{"10"} } } } {} 8 100 size 12{ { { size 8{8} } over { size 8{"100"} } } } {}

c) 8 10 size 12{ { { size 8{8} } over { size 8{"10"} } } } {} 2 100 size 12{ { { size 8{2} } over { size 8{"100"} } } } {} 4 1000 size 12{ { { size 8{4} } over { size 8{"1000"} } } } {}

d) 3 10 size 12{ { { size 8{3} } over { size 8{"10"} } } } {} 8 1000 size 12{ { { size 8{8} } over { size 8{"1000"} } } } {}

5. a) 0,12; 0,18; 0,24; 0,3; 0,36;

0,42; 0,48; 0,54; 0,6; 0,66

b) 0,018; 0,027; 0,036; 0,045;

0,054; 0,063; 0,072; 0,081; 0,09

c) 7,4; 11,1; 14,8; 18,5;

22,2; 25,9; 29,6; 33,3; 37

6. a) 0,8; 1,0; 1,2; 1,4

b) 5,5; 5; 4,5; 4

c) 0,989; 0,986; 0,983;

0,98; 0,977

d) 0,016; 0,02; 0,024;

0,028; 0,032

7. +20 +100 +0,003

+0,3

+0,07 +0,13 +0,05

+0,3

+0,007 +0,12 +0,009

8. a) 1,0

b) 3,2

c) 0,75

d) 4,2

e) 1,4

f) 2,9

g) 3,15

h) 3,42

i) 0,05

j) 4,5

k) 3,98

l) 1,02

m) 2,5

n) 15,6

o) 11,4

Leerders afdeling

Inhoud

Aktiwiteit: desimale breuke [lu 1.1.1, lu 1.3.2, lu 1.7.4, lu 1.10,]

1. Het jy geweet?

Die desimale stelsel het in ongeveer 500 n.C. by die Hindoes in Indië ontstaan. Johannes Kepler, wiskundige in Nederland, het die desimale komma die eerste keer in die vroeë 1600’s gebruik. Voor dit het wiskundiges sirkels of stafies gebruik om desimale breuke aan te toon. John Napier, ’n Skot, was die eerste om in 1617 die desimale punt te gebruik. Engeland en die VSA gebruik steeds vandag ’n punt in plaas van ’n desimale komma.

2. Onthou jy nog?

Verdeel in groepe van vier. Maak ’n lys van waar ons desimale breuke vandag in ons alledaagse lewe gebruik.

3. Kom ons hersien

1 438,576 = 1 000 + 400 + 30 + 8 + 5 10 size 12{ { { size 8{5} } over { size 8{"10"} } } } {} + 7 100 size 12{ { { size 8{7} } over { size 8{"100"} } } } {} + 6 1 000 size 12{ { { size 8{6} } over { size 8{1`"000"} } } } {}

3.1 Skryf nou die waarde van die onderstreepte syfer in elk van die volgende neer:

a) 532,1 6 8 ..................................................

b) 326,43 2 ..................................................

c) 2 91,567 ..................................................

d) 460, 2 31 ..................................................

e) 8 8 6,434 ..................................................

f) 1 467,23 9 ..................................................

g) 2 321,456 ..................................................

h) 3 641,9 8 5 ..................................................

i) 2 634, 5 27 ..................................................

j) 8 139,43 8 ..................................................

3.2 Voltooi die volgende:

Bv. 5,3 = 5 + 3 10 size 12{ { { size 8{3} } over { size 8{"10"} } } } {}

a) 6,9 = 6 + ....................

b) 26,38 = 26 + .................... + ....................

c) 9,824 = 9 + .................... + .................... + ....................

d) 16,308 = 16 + .................... + ....................

4. Werk saam met ’n maat. Maak beurte en tel harop:

a) 3,8 ; 3,9 ; 4 ; 4,1 ; . . . to 8

b) 14 ; 13,5 ; 13 ; 12,5 ; . . . to 6

c) 2,4 ; 2,6 ; 2,8 ; . . . to 7

d) 18,8 ; 18,6 ; 18,4 ; to 10

5. Kan jy nog onthou?

As ons bv. aanhoudend 0,01 (een honderdste) wil bytel met ’n sakrekenaar, programmeer ons dit so: 0,01 + + = = =

a) Programmeer jou sakrekenaar om elke keer 0,06 by te tel en voltooi:

0,06 ; ................. ; ................. ; ................. ; ................. ; ................. ;

................. ; ................. ; ................. ; ................. ; .................

b) Tel elke keer 0,009 by: (programmeer jou sakrekenaar!)

0,009 ; ................. ; ................. ; ................. ; ................. ;

................. ; ................. ; ................. ; ................. ; .................

c) Tel elke keer 3,7 by met behulp van jou sakrekenaar:

3,7 ; ................. ; ................. ; ................. ; ................. ;

................. ; ................. ; ................. ; ................. ; .................

6. Voltooi die volgende SONDER ’n sakrekenaar:

a) 0,2 ; 0,4 ; 0,6 ; ................. ; ................. ; ................. ; .................

b) 7 ; 6,5 ; 6 ; ................. ; ................. ; ................. ; .................

c) 0,998 ; 0,995 ; 0,992 ; ............. ; ............. ; ............ ;........... ; ...........

d) 0,004 ; 0,008 ; 0,012 ; ............. ; ............. ; ............ ;........... ; ...........

7. KOPKRAPPER!

Voltooi die volgende vloeidiagram. (Jy mag jou sakrekenaar gebruik as jy wil!)

8. Kom ons kyk hoe goed vaar jy in die eerste hoofrekentoets! Skryf net die antwoorde neer:

a) 0,7 + 0,3 = .................

b) 2,4 + 0,8 = .................

c) 0,35 + 0,4 = .................

d) 5 – 0,8 = .................

e) 0,8 + 0,6 = .................

f) 3,4 – 0,5 = .................

g) 3,45 – 0,3 = .................

h) 3,45 – 0,03 = .................

i) 2,45 – 2,4 = .................

j) 2,45 + 2,05 = .................

k) 4 – 0,02 = .................

l) 0,38 + 0,64 = .................

m) 1,25 + 1,25 = .................

n) 6,9 + 8,7 = .................

o) 15 – 3,6 = .................

(15)

9. Tyd vir selfassessering

Assessering

Leeruitkomste 1: Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.1: Dit is duidelik wanneer die leerder aan- en terugtel op die volgende maniere:

1.1.1 in desimale intervalle;

Assesseringstandaard 1.3: Dit is duidelik wanneer die leerder die volgende getalle herken, klassifiseer en voorstel sodat dit beskryf en vergelyk kan word:

1.3.2 desimale (tot minstens drie desimale plekke), breuke en persentasies;

Assesseringstandaard 1.7: Dit is duidelik wanneer die leerder skat en bereken deur geskikte bewerkings vir probleme wat die volgende behels, te kies en te gebruik:

1.7.4 optelling, aftrekking;

Assesseringstandaard 1.10: Dit is duidelik wanneer die leerder ‘n verskeidenheid strategieë gebruik om oplossings te kontroleer en die redelikheid daarvan te beoordeel.

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 7. OpenStax CNX. Oct 21, 2009 Download for free at http://cnx.org/content/col11076/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 7' conversation and receive update notifications?

Ask