# 1.5 Transformation of functions

 Page 1 / 22
In this section, you will:
• Graph functions using vertical and horizontal shifts.
• Graph functions using reflections about the $\text{\hspace{0.17em}}x$ -axis and the $\text{\hspace{0.17em}}y$ -axis.
• Determine whether a function is even, odd, or neither from its graph.
• Graph functions using compressions and stretches.
• Combine transformations.

We all know that a flat mirror enables us to see an accurate image of ourselves and whatever is behind us. When we tilt the mirror, the images we see may shift horizontally or vertically. But what happens when we bend a flexible mirror? Like a carnival funhouse mirror, it presents us with a distorted image of ourselves, stretched or compressed horizontally or vertically. In a similar way, we can distort or transform mathematical functions to better adapt them to describing objects or processes in the real world. In this section, we will take a look at several kinds of transformations.

## Graphing functions using vertical and horizontal shifts

Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs, and equations. One method we can employ is to adapt the basic graphs of the toolkit functions to build new models for a given scenario. There are systematic ways to alter functions to construct appropriate models for the problems we are trying to solve.

## Identifying vertical shifts

One simple kind of transformation involves shifting the entire graph of a function up, down, right, or left. The simplest shift is a vertical shift , moving the graph up or down, because this transformation involves adding a positive or negative constant to the function. In other words, we add the same constant to the output value of the function regardless of the input. For a function $\text{\hspace{0.17em}}g\left(x\right)=f\left(x\right)+k,\text{\hspace{0.17em}}$ the function $\text{\hspace{0.17em}}f\left(x\right)\text{\hspace{0.17em}}$ is shifted vertically $\text{\hspace{0.17em}}k\text{\hspace{0.17em}}$ units. See [link] for an example.

To help you visualize the concept of a vertical shift, consider that $\text{\hspace{0.17em}}y=f\left(x\right).\text{\hspace{0.17em}}$ Therefore, $\text{\hspace{0.17em}}f\left(x\right)+k\text{\hspace{0.17em}}$ is equivalent to $\text{\hspace{0.17em}}y+k.\text{\hspace{0.17em}}$ Every unit of $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ is replaced by $\text{\hspace{0.17em}}y+k,\text{\hspace{0.17em}}$ so the $\text{\hspace{0.17em}}y\text{-}$ value increases or decreases depending on the value of $\text{\hspace{0.17em}}k.\text{\hspace{0.17em}}$ The result is a shift upward or downward.

## Vertical shift

Given a function $f\left(x\right),$ a new function $g\left(x\right)=f\left(x\right)+k,$ where $\text{\hspace{0.17em}}k$ is a constant, is a vertical shift    of the function $f\left(x\right).$ All the output values change by $k$ units. If $k$ is positive, the graph will shift up. If $k$ is negative, the graph will shift down.

## Adding a constant to a function

To regulate temperature in a green building, airflow vents near the roof open and close throughout the day. [link] shows the area of open vents $\text{\hspace{0.17em}}V\text{\hspace{0.17em}}$ (in square feet) throughout the day in hours after midnight, $\text{\hspace{0.17em}}t.\text{\hspace{0.17em}}$ During the summer, the facilities manager decides to try to better regulate temperature by increasing the amount of open vents by 20 square feet throughout the day and night. Sketch a graph of this new function.

We can sketch a graph of this new function by adding 20 to each of the output values of the original function. This will have the effect of shifting the graph vertically up, as shown in [link] .

Notice that in [link] , for each input value, the output value has increased by 20, so if we call the new function $\text{\hspace{0.17em}}S\left(t\right),$ we could write

$S\left(t\right)=V\left(t\right)+20$

This notation tells us that, for any value of $\text{\hspace{0.17em}}t,S\left(t\right)\text{\hspace{0.17em}}$ can be found by evaluating the function $\text{\hspace{0.17em}}V\text{\hspace{0.17em}}$ at the same input and then adding 20 to the result. This defines $\text{\hspace{0.17em}}S\text{\hspace{0.17em}}$ as a transformation of the function $\text{\hspace{0.17em}}V,\text{\hspace{0.17em}}$ in this case a vertical shift up 20 units. Notice that, with a vertical shift, the input values stay the same and only the output values change. See [link] .

 $t$ 0 8 10 17 19 24 $V\left(t\right)$ 0 0 220 220 0 0 $S\left(t\right)$ 20 20 240 240 20 20

So a horizontal compression by factor of 1/2 is the same as a horizontal stretch by a factor of 2, right?
The center is at (3,4) a focus is at (3,-1), and the lenght of the major axis is 26
The center is at (3,4) a focus is at (3,-1) and the lenght of the major axis is 26 what will be the answer?
Rima
I done know
Joe
What kind of answer is that😑?
Rima
I had just woken up when i got this message
Joe
Rima
i have a question.
Abdul
how do you find the real and complex roots of a polynomial?
Abdul
@abdul with delta maybe which is b(square)-4ac=result then the 1st root -b-radical delta over 2a and the 2nd root -b+radical delta over 2a. I am not sure if this was your question but check it up
Nare
This is the actual question: Find all roots(real and complex) of the polynomial f(x)=6x^3 + x^2 - 4x + 1
Abdul
@Nare please let me know if you can solve it.
Abdul
I have a question
juweeriya
hello guys I'm new here? will you happy with me
mustapha
The average annual population increase of a pack of wolves is 25.
how do you find the period of a sine graph
Period =2π if there is a coefficient (b), just divide the coefficient by 2π to get the new period
Am
if not then how would I find it from a graph
Imani
by looking at the graph, find the distance between two consecutive maximum points (the highest points of the wave). so if the top of one wave is at point A (1,2) and the next top of the wave is at point B (6,2), then the period is 5, the difference of the x-coordinates.
Am
you could also do it with two consecutive minimum points or x-intercepts
Am
I will try that thank u
Imani
Case of Equilateral Hyperbola
ok
Zander
ok
Shella
f(x)=4x+2, find f(3)
Benetta
f(3)=4(3)+2 f(3)=14
lamoussa
14
Vedant
pre calc teacher: "Plug in Plug in...smell's good" f(x)=14
Devante
8x=40
Chris
Explain why log a x is not defined for a < 0
the sum of any two linear polynomial is what
Momo
how can are find the domain and range of a relations
the range is twice of the natural number which is the domain
Morolake
A cell phone company offers two plans for minutes. Plan A: $15 per month and$2 for every 300 texts. Plan B: $25 per month and$0.50 for every 100 texts. How many texts would you need to send per month for plan B to save you money?
6000
Robert
more than 6000
Robert
For Plan A to reach $27/month to surpass Plan B's$26.50 monthly payment, you'll need 3,000 texts which will cost an additional \$10.00. So, for the amount of texts you need to send would need to range between 1-100 texts for the 100th increment, times that by 3 for the additional amount of texts...
Gilbert
...for one text payment for 300 for Plan A. So, that means Plan A; in my opinion is for people with text messaging abilities that their fingers burn the monitor for the cell phone. While Plan B would be for loners that doesn't need their fingers to due the talking; but those texts mean more then...
Gilbert
can I see the picture
How would you find if a radical function is one to one?
how to understand calculus?
with doing calculus
SLIMANE
Thanks po.
Jenica
Hey I am new to precalculus, and wanted clarification please on what sine is as I am floored by the terms in this app? I don't mean to sound stupid but I have only completed up to college algebra.
I don't know if you are looking for a deeper answer or not, but the sine of an angle in a right triangle is the length of the opposite side to the angle in question divided by the length of the hypotenuse of said triangle.
Marco
can you give me sir tips to quickly understand precalculus. Im new too in that topic. Thanks
Jenica
if you remember sine, cosine, and tangent from geometry, all the relationships are the same but they use x y and r instead (x is adjacent, y is opposite, and r is hypotenuse).
Natalie
it is better to use unit circle than triangle .triangle is only used for acute angles but you can begin with. Download any application named"unit circle" you find in it all you need. unit circle is a circle centred at origine (0;0) with radius r= 1.
SLIMANE
What is domain
johnphilip
the standard equation of the ellipse that has vertices (0,-4)&(0,4) and foci (0, -15)&(0,15) it's standard equation is x^2 + y^2/16 =1 tell my why is it only x^2? why is there no a^2?