<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Identify power functions.
  • Identify end behavior of power functions.
  • Identify polynomial functions.
  • Identify the degree and leading coefficient of polynomial functions.
Three birds on a cliff with the sun rising in the background.
(credit: Jason Bay, Flickr)

Suppose a certain species of bird thrives on a small island. Its population over the last few years is shown in [link] .

Year 2009 2010 2011 2012 2013
Bird Population 800 897 992 1 , 083 1 , 169

The population can be estimated using the function P ( t ) = 0.3 t 3 + 97 t + 800 , where P ( t ) represents the bird population on the island t years after 2009. We can use this model to estimate the maximum bird population and when it will occur. We can also use this model to predict when the bird population will disappear from the island. In this section, we will examine functions that we can use to estimate and predict these types of changes.

Identifying power functions

Before we can understand the bird problem, it will be helpful to understand a different type of function. A power function is a function with a single term that is the product of a real number, a coefficient, and a variable raised to a fixed real number.

As an example, consider functions for area or volume. The function for the area of a circle with radius r is

A ( r ) = π r 2

and the function for the volume of a sphere with radius r is

V ( r ) = 4 3 π r 3

Both of these are examples of power functions because they consist of a coefficient, π or 4 3 π , multiplied by a variable r raised to a power.

Power function

A power function    is a function that can be represented in the form

f ( x ) = k x p

where k and p are real numbers, and k is known as the coefficient    .

Is f ( x ) = 2 x a power function?

No. A power function contains a variable base raised to a fixed power. This function has a constant base raised to a variable power. This is called an exponential function, not a power function.

Identifying power functions

Which of the following functions are power functions?

f ( x ) = 1 Constant function f ( x ) = x Identify function f ( x ) = x 2 Quadratic function f ( x ) = x 3 Cubic function f ( x ) = 1 x Reciprocal function f ( x ) = 1 x 2 Reciprocal squared function f ( x ) = x Square root function f ( x ) = x 3 Cube root function

All of the listed functions are power functions.

The constant and identity functions are power functions because they can be written as f ( x ) = x 0 and f ( x ) = x 1 respectively.

The quadratic and cubic functions are power functions with whole number powers f ( x ) = x 2 and f ( x ) = x 3 .

The reciprocal and reciprocal squared functions are power functions with negative whole number powers because they can be written as f ( x ) = x 1 and f ( x ) = x 2 .

The square and cube root functions are power functions with fractional powers because they can be written as f ( x ) = x 1 2 or f ( x ) = x 1 3 .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Which functions are power functions?

f ( x ) = 2 x 4 x 3 g ( x ) = x 5 + 5 x 3 h ( x ) = 2 x 5 1 3 x 2 + 4

f ( x ) is a power function because it can be written as f ( x ) = 8 x 5 . The other functions are not power functions.

Got questions? Get instant answers now!

Identifying end behavior of power functions

[link] shows the graphs of f ( x ) = x 2 , g ( x ) = x 4 and h ( x ) = x 6 , which are all power functions with even, whole-number powers. Notice that these graphs have similar shapes, very much like that of the quadratic function in the toolkit. However, as the power increases, the graphs flatten somewhat near the origin and become steeper away from the origin.

Questions & Answers

how do I set up the problem?
Harshika Reply
what is a solution set?
hello, I am happy to help!
Shirley Reply
please can go further on polynomials quadratic
I need quadratic equation link to Alpa Beta
Abdullahi Reply
find the value of 2x=32
Felix Reply
divide by 2 on each side of the equal sign to solve for x
Want to review on complex number 1.What are complex number 2.How to solve complex number problems.
use the y -intercept and slope to sketch the graph of the equation y=6x
Only Reply
how do we prove the quadratic formular
Seidu Reply
hello, if you have a question about Algebra 2. I may be able to help. I am an Algebra 2 Teacher
Shirley Reply
thank you help me with how to prove the quadratic equation
may God blessed u for that. Please I want u to help me in sets.
what is math number
Tric Reply
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
Sidiki Reply
Need help solving this problem (2/7)^-2
Simone Reply
what is the coefficient of -4×
Mehri Reply
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
Alfred Reply
An investment account was opened with an initial deposit of $9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years?
Kala Reply
lim x to infinity e^1-e^-1/log(1+x)
given eccentricity and a point find the equiation
Moses Reply

Get the best College algebra course in your pocket!

Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?