<< Chapter < Page Chapter >> Page >
q = 1 π 0 π | A d ( ω ) - A ( ω ) | 2 d ω

where A d ( ω ) is the desired ideal amplitude response, A ( ω ) = n a ( n ) cos ( ω ( M - N ) n ) is the achieved amplitude response with the length h ( n ) related to h ( n ) by Equation 29 from FIR Digital Filters . This integral squared error is approximated by the discrete squared errordefined in [link] for L > > N which in some cases is much easier to minimize. However for some very useful cases, formulas can be foundfor h ( n ) that minimize [link] and that is what we will be considering in this section.

The unweighted least integral squared error approximation

If the error measure is the unweighted integral squared error defined in [link] , Parseval's theorem gives the equivalent time-domain formulation for the error to be

q = n = - | h d ( n ) - h ( n ) | 2 = 1 π 0 π | A d ( ω ) - A ( ω ) | 2 d ω .

In general, this ideal response is infinite in duration and, therefore, cannot be realized exactly byan actual FIR filter.

As was done in the case of the discrete error measure, we break the infinite sum in [link] into two parts, one of which depends on h ( n ) and the other does not.

q = n = - M M | h d ( n ) - h ( n ) | 2 + 2 n = M + 1 | h d ( n ) | 2

Again, we see that the minimum q is achieved by using h ( n ) = h d ( n ) for - M n M . In other words, the infinitely long h d ( n ) is symmetrically truncated to give the optimal least integral squared errorapproximation. The problem then becomes one of finding the h d ( n ) to truncate.

Here the integral definition of approximation error is used. This is usually what we really want, but in some cases the integrals can not becarried out and the sampled method above must be used.

Ideal constant gain passband lowpass filter

Here we assume the simplest ideal lowpass single band FIR filter to have unity passband gain for 0 < ω < ω 0 and zero stopband gain for ω 0 < ω < π similar to those in Figure 8a from FIR Digital Filters and [link] . This gives

A d ( ω ) = { 1 0 ω ω 0 0 ω 0 ω π

as the ideal desired amplitude response. The ideal shifted filter coefficients are the inverse DTFT from Equation 15 from Chebyshev or Equal Ripple Error Approximation Filters of this amplitude which for N odd are given by

h ^ d ( n ) = 1 π 0 π A d ( ω ) cos ( ω n ) d ω
= 1 π 0 ω 0 cos ( ω n ) d ω = ω 0 π sin ( ω 0 n ) ω 0 n

which is sometimes called a “sinc" function. Note h ^ d ( n ) is generally infinite in length. This is now symmetricallytruncated and shifted by M = ( N - 1 ) / 2 to give the optimal, causal length- N FIR filter coefficients as

h ( n ) = ω 0 π sin ( ω 0 ( n - M ) ) ω 0 ( n - M ) for 0 n N - 1

and h ( n ) = 0 otherwise. The corresponding derivation for an even length starts with the inverseDTFT in Equation 5 from Constrained Approximation and Mixed Criteria for a shifted even length filter is

h ^ d = 1 π 0 π A d ( ω ) cos ( ω ( n + 1 / 2 ) ) d ω = ω 0 π sin ( ω 0 ( n + 1 / 2 ) ) ω 0 ( n + 1 / 2 )

which when truncated and shifted by N / 2 gives the same formula as for the odd length design in [link] but one should note that M = ( N - 1 ) / 2 is not an integer for an even N .

Ideal linearly increasing gain passband lowpass filter

We now derive the design formula for a filter with an ideal amplitude response that is a linearly increasing function in the passband ratherthan a constant as was assumed above. This ideal amplitude response is given byand illustrated in [link] For N odd, the ideal infinitely long shifted filter coefficients are the inverse DTFT of this amplitude given by

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Digital signal processing and digital filter design (draft). OpenStax CNX. Nov 17, 2012 Download for free at http://cnx.org/content/col10598/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Digital signal processing and digital filter design (draft)' conversation and receive update notifications?