<< Chapter < Page Chapter >> Page >

Two-dimensional distributions

This figure shows two grids of numbered boxes. Both are titled with two lines of code. The grid on the left, with code (Block, Block), has sixteen boxes, four boxes each numbered 1, 2, 3, and 4, and the numbers are organized in quadrants. The grid on the right, with code (*, block), has sixteen boxes, four boxes each numbered 1, 2, 3, and 4, and the numbers are organized in columns.

When dealing with more than one data structure to perform a computation, you can either separately distribute them or use the ALIGN directive to ensure that corresponding elements of the two data structures are to be allocated together. In the following example, we have a plate array and a scaling factor that must be applied to each column of the plate during the computation:


DIMENSION PLATE(200,200),SCALE(200) !HPF$ DISTRIBUTE PLATE(*,BLOCK)!HPF$ ALIGN SCALE(I) WITH PLATE(J,I)

Or:


DIMENSION PLATE(200,200),SCALE(200) !HPF$ DISTRIBUTE PLATE(*,BLOCK)!HPF$ ALIGN SCALE(:) WITH PLATE(*,:)

In both examples, the PLATE and the SCALE variables are allocated to the same processors as the corresponding columns of PLATE . The * and : syntax communicate the same information. When * is used, that dimension is collapsed, and it doesn't participate in the distribution. When the : is used, it means that dimension follows the corresponding dimension in the variable that has already been distributed.

You could also specify the layout of the SCALE variable and have the PLATE variable "follow" the layout of the SCALE variable:


DIMENSION PLATE(200,200),SCALE(200) !HPF$ DISTRIBUTE SCALE(BLOCK)!HPF$ ALIGN PLATE(J,I) WITH SCALE(I)

You can put simple arithmetic expressions into the ALIGN directive subject to some limitations. Other directives include:

  • PROCESSORS Allows you to create a shape of the processor configuration that can be used to align other data structures.
  • REDISTRIBUTE and REALIGN Allow you to dynamically reshape data structures at runtime as the communication patterns change during the course of the run.
  • TEMPLATE Allows you to create an array that uses no space. Instead of distributing one data structure and aligning all the other data structures, some users will create and distribute a template and then align all of the real data structures to that template.

The use of directives can range from very simple to very complex. In some situations, you distribute the one large shared structure, align a few related structures and you are done. In other situations, programmers attempt to optimize communications based on the topology of the interconnection network (hypercube, multi-stage interconnection network, mesh, or toroid) using very detailed directives. They also might carefully redistribute the data at the various phases of the computation.

Hopefully your application will yield good performance without too much effort.

Hpf control structures

While the HPF designers were in the midst of defining a new language, they set about improving on what they saw as limitations in FORTRAN 90. Interestingly, these modifications are what is being considered as part of the new FORTRAN 95 standard.

The FORALL statement allows the user to express simple iterative operations that apply to the entire array without resorting to a do-loop (remember, do-loops force order). For example:


FORALL (I=1:100, J=1:100) A(I,J) = I + J

This can be expressed in native FORTRAN 90 but it is rather ugly, counterintuitive, and prone to error.

Questions & Answers

How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?

Ask