<< Chapter < Page Chapter >> Page >

High performance microprocessors

It has been said that history is rewritten by the victors. It is clear that high performance RISC-based microprocessors are defining the current history of high performance computing. We begin our study with the basic building blocks of modern high performance computing: the high performance RISC microprocessors.

A complex instruction set computer (CISC) instruction set is made up of powerful primitives, close in functionality to the primitives of high-level languages like C or FORTRAN. It captures the sense of “don’t do in software what you can do in hardware.” RISC, on the other hand, emphasizes low-level primitives, far below the complexity of a high-level language. You can compute anything you want using either approach, though it will probably take more machine instructions if you’re using RISC. The important difference is that with RISC you can trade instruction-set complexity for speed.

To be fair, RISC isn’t really all that new. There were some important early machines that pioneered RISC philosophies, such as the CDC 6600 (1964) and the IBM 801 project (1975). It was in the mid-1980s, however, that RISC machines first posed a direct challenge to the CISC installed base. Heated debate broke out — RISC versus CISC — and even lingers today, though it is clear that the RISC One of the most interesting remaining topics is the definition of “RISC.” Don’t be fooled into thinking there is one definition of RISC. The best I have heard so far is from John Mashey: “RISC is a label most commonly used for a set of instruction set architecture characteristics chosen to ease the use of aggressive implementation techniques found in high performance processors (regardless of RISC, CISC, or irrelevant).” approach is in greatest favor; late-generation CISC machines are looking more RISC-like, and some very old families of CISC, such as the DEC VAX, are being retired.

This chapter is about CISC and RISC instruction set architectures and the differences between them. We also describe newer processors that can execute more than one instruction at a time and can execute instructions out of order.

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?

Ask