# 0.13 Maximum likelihood estimation

 Page 1 / 1

In the last lecture we derived a risk (MSE) bound for regression problems; i.e., select an $f\in \mathcal{F}$ so that $E\left[{\left(f\left(X\right)-Y\right)}^{2}\right]-E\left[{\left({f}^{*}\left(X\right)-Y\right)}^{2}\right]$ is small, where ${f}^{*}\left(x\right)=E\left[Y|X=x\right]$ . The result is summarized below.

Theorem

## Complexity regularization with squared error loss

Let $\mathcal{X}={\mathbb{R}}^{d}$ , $\mathcal{Y}=\left[-b/2,b/2\right]$ , ${\left\{{X}_{i},{Y}_{i}\right\}}_{i=1}^{n}$ iid, ${P}_{XY}$ unknown, $\mathcal{F}$ = {collection of candidate functions},

$f:{\mathbb{R}}^{d}\to \mathcal{Y},\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}R\left(f\right)=E\left[{\left(f\left(X\right)-Y\right)}^{2}\right].$

Let $c\left(f\right)$ , $f\in \mathcal{F}$ , be positive numbers satisfying ${\sum }_{f\in \mathcal{F}}{2}^{-c\left(f\right)}\le 1$ , and select a function from $\mathcal{F}$ according to

${\stackrel{^}{f}}_{n}=argmin\left\{{\stackrel{^}{R}}_{n},\left(f\right),+,\frac{1}{ϵ},\phantom{\rule{0.166667em}{0ex}},\frac{c\left(f\right)log2}{n}\right\},$

with $ϵ\le \frac{3}{5{b}^{2}}$ and ${\stackrel{^}{R}}_{n}\left(f\right)=\frac{1}{n}{\sum }_{i=1}^{n}{\left(f\left({X}_{i}\right)-{Y}_{i}\right)}^{2}$ . Then,

$E\left[R\left({\stackrel{^}{f}}_{n}\right)\right]-R\left({f}^{*}\right)\phantom{\rule{4pt}{0ex}}\le \phantom{\rule{4pt}{0ex}}\left(\frac{1+\alpha }{1-\alpha }\right)\phantom{\rule{0.166667em}{0ex}}\underset{f\in \mathcal{F}}{min}\left\{R,\left(f\right),-,R,\left({f}^{*}\right),+,\frac{1}{ϵ},\phantom{\rule{0.166667em}{0ex}},\frac{c\left(f\right)log2}{n}\right\}+O\left({n}^{-1}\right)$

where $\alpha =\frac{ϵ{b}^{2}}{1-2{b}^{2}ϵ/3}$ .

## Maximum likelihood estimation

The focus of this lecture is to consider another approach to learning based on maximum likelihood estimation. Consider the classical signalplus noise model:

${Y}_{i}=f\left(\frac{i}{n}\right)+{W}_{i},i=1,\cdots ,n$

where ${W}_{i}$ are iid zero-mean noises. Furthermore, assume that ${W}_{i}\sim P\left(w\right)$ for some known density $P\left(w\right)$ . Then

${Y}_{i}\sim P\left(y,-,f,\left(\frac{i}{n}\right)\right)\equiv {P}_{{f}_{i}}\left(y\right)$

since ${Y}_{i}-f\left(\frac{i}{n}\right)={W}_{i}$ .

A very common and useful loss function to consider is

${\stackrel{^}{R}}_{n}\left(f\right)=\frac{1}{n}\sum _{i=1}^{n}\left(-log{P}_{{f}_{i}}\left({Y}_{i}\right)\right).$

Minimizing ${\stackrel{^}{R}}_{n}$ with respect to $f$ is equivalent to maximizing

$\frac{1}{n}\sum _{i=1}^{n}log{P}_{{f}_{i}}\left({Y}_{i}\right)$

or

$\prod _{i=1}^{n}{P}_{{f}_{i}}\left({Y}_{i}\right).$

Thus, using the negative log-likelihood as a loss function leads to maximum likelihood estimation. If the ${W}_{i}$ are iid zero-mean Gaussian r.v.s then this is just the squared error loss weconsidered last time. If the ${W}_{i}$ are Laplacian distributed e.g. $P\left(w\right)\propto {e}^{-|w|}$ , then we obtain the absolute error, or ${L}_{1}$ , loss function. We can also handle non-additive models such as thePoisson model

${Y}_{i}\sim P\left(y|f,\left(i,/,n\right)\right)={e}^{-f\left(i/n\right)}\frac{{\left[f\left(i/n\right)\right]}^{y}}{y!}.$

In this case

$-logP\left({Y}_{i},|f,\left(i,/,n\right)\right)\phantom{\rule{4pt}{0ex}}=\phantom{\rule{4pt}{0ex}}f\left(i,/,n\right)-{Y}_{i}log\left(f,\left(i,/,n\right)\right)+\mathrm{constant}$

which is a very different loss function, but quite appropriate for many imaging problems.

Before we investigate maximum likelihood estimation for model selection, let's review some of the basic concepts. Let $\Theta$ denote a parameter space (e.g., $\Theta =R$ ), and assume we have observations

${Y}_{i}\stackrel{iid}{\sim }{P}_{{\theta }^{*}}\left(y\right),\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}i=1,\cdots ,n$

where ${\theta }^{*}\in \Theta$ is a parameter determining the density of the { ${Y}_{i}$ }. The ML estimator of ${\theta }^{*}$ is

$\begin{array}{ccc}\hfill {\stackrel{^}{\theta }}_{n}& =& arg\underset{\theta \in \Theta }{max}\prod _{i=1}^{n}{P}_{\theta }\left({Y}_{i}\right)\hfill \\ & =& arg\underset{\theta \in \Theta }{max}\sum _{i=1}^{n}log{P}_{\theta }\left({Y}_{i}\right)\hfill \\ & =& arg\underset{\theta \in \Theta }{min}\sum _{i=1}^{n}-log{P}_{\theta }\left({Y}_{i}\right).\hfill \end{array}$

$\stackrel{^}{\theta }$ maximizes the expected log-likelihood. To see this, let's compare the expected log-likelihood of ${\theta }^{*}$ with any other $\theta \in \Theta$ .

$\begin{array}{ccc}\hfill E\left[log{P}_{{\theta }^{*}}\left(Y\right)-log{P}_{\theta }\left(Y\right)\right]& =& E\left[log,\frac{{P}_{{\theta }^{*}}\left(Y\right)}{{P}_{\theta }\left(Y\right)}\right]\hfill \\ & =& \int log\frac{{P}_{{\theta }^{*}}\left(y\right)}{{P}_{\theta }\left(y\right)}{P}_{{\theta }^{*}}\left(y\right)dy\hfill \\ & =& K\left({P}_{\theta },{P}_{{\theta }^{*}}\right)\phantom{\rule{1.em}{0ex}}\text{the}\phantom{\rule{4.pt}{0ex}}\text{KL}\phantom{\rule{4.pt}{0ex}}\text{divergence}\hfill \\ & \ge & 0\phantom{\rule{1.em}{0ex}}\text{with}\phantom{\rule{4.pt}{0ex}}\text{equality}\phantom{\rule{4.pt}{0ex}}\text{iff}\phantom{\rule{0.166667em}{0ex}}{P}_{{\theta }^{*}}={P}_{\theta }.\hfill \end{array}$

Why?

$\begin{array}{ccc}\hfill -E\left[log,\frac{{P}_{{\theta }^{*}}\left(y\right)}{{P}_{\theta }\left(y\right)}\right]& =& E\left[log,\frac{{P}_{\theta }\left(y\right)}{{P}_{{\theta }^{*}}\left(y\right)}\right]\hfill \\ & \le & logE\left[\frac{{P}_{\theta }\left(y\right)}{{P}_{{\theta }^{*}}\left(y\right)}\right]\hfill \\ & =& log\int {P}_{\theta }\left(y\right)dy=0\hfill \\ & ⇒& K\left({P}_{\theta },{P}_{{\theta }^{*}}\right)\ge 0\hfill \end{array}$

On the other hand, since ${\stackrel{^}{\theta }}_{n}$ maximizes the likelihood over $\theta \in \Theta$ , we have

$\sum _{i=1}^{n}log\frac{{P}_{{\theta }^{*}}\left({Y}_{i}\right)}{{P}_{{\stackrel{^}{\theta }}_{n}}\left({Y}_{i}\right)}=\sum _{i=1}^{n}log{P}_{{\theta }^{*}}\left({Y}_{i}\right)-log{P}_{{\stackrel{^}{\theta }}_{n}}\left({Y}_{i}\right)\le 0.$

Therefore,

$\frac{1}{n}\sum _{i=1}^{n}log\frac{{P}_{{\theta }^{*}}\left({Y}_{i}\right)}{{P}_{{\stackrel{^}{\theta }}_{n}}\left({Y}_{i}\right)}-K\left({P}_{{\stackrel{^}{\theta }}_{n}},{P}_{{\theta }^{*}}\right)+K\left({P}_{{\stackrel{^}{\theta }}_{n}},{P}_{{\theta }^{*}}\right)\le 0$

or re-arranging

$K\left({P}_{{\stackrel{^}{\theta }}_{n}},{P}_{{\theta }^{*}}\right)\le \left|\frac{1}{n},\sum _{i=1}^{n},log,\frac{{P}_{{\theta }^{*}}\left({Y}_{i}\right)}{{P}_{{\stackrel{^}{\theta }}_{n}}\left({Y}_{i}\right)},-,K,\left({P}_{{\stackrel{^}{\theta }}_{n}},{P}_{{\theta }^{*}}\right)\right|.$

Notice that the quantity

$\frac{1}{n}\sum _{i=1}^{n}log\frac{{P}_{{\theta }^{*}}\left({Y}_{i}\right)}{{P}_{\theta }\left({Y}_{i}\right)}$

is an empirical average whose mean is $K\left({P}_{\theta },{P}_{{\theta }^{*}}\right)$ . By the law of large numbers, for each $\theta \in \Theta$ ,

$\left|\frac{1}{n},\sum _{i=1}^{n},log,\frac{{P}_{{\theta }^{*}}\left({Y}_{i}\right)}{{P}_{\theta }\left({Y}_{i}\right)},-,K,\left({P}_{\theta },{P}_{{\theta }^{*}}\right)\right|\stackrel{a.s.}{\to }0.$

If this also holds for the sequence $\left\{{\stackrel{^}{\theta }}_{n}\right\}$ , then we have

$K\left({P}_{{\stackrel{^}{\theta }}_{n}},{P}_{{\theta }^{*}}\right)\le \left|\frac{1}{n},\sum ,log,\frac{{P}_{{\theta }^{*}}\left({Y}_{i}\right)}{{P}_{{\stackrel{^}{\theta }}_{n}}\left({Y}_{i}\right)},-,K,\left({P}_{{\stackrel{^}{\theta }}_{n}},{P}_{{\theta }^{*}}\right)\right|\to 0\phantom{\rule{0.166667em}{0ex}}\mathrm{as}\phantom{\rule{0.166667em}{0ex}}n\to \infty$

which implies that

${P}_{{\stackrel{^}{\theta }}_{n}}\to {P}_{{\theta }^{*}}$

which often implies that

${\stackrel{^}{\theta }}_{n}\to {\theta }^{*}$

in some appropriate sense (e.g., point-wise or in norm).

## Gaussian distributions

${P}_{{\theta }^{*}}\left(y\right)=\frac{1}{\sqrt{\pi }}{e}^{-{\left(y-{\theta }^{*}\right)}^{2}}$
$\Theta =\mathbb{R},\phantom{\rule{1.em}{0ex}}{\left\{{Y}_{i}\right\}}_{i=1}^{n}\stackrel{iid}{\sim }{P}_{{\theta }^{*}}\left(y\right)$
$\begin{array}{ccc}\hfill K\left({P}_{\theta },{P}_{{\theta }^{*}}\right)& =& \int log\frac{{P}_{{\theta }^{*}}\left(y\right)}{{P}_{\theta }\left(y\right)}{P}_{{\theta }^{*}}\left(y\right)dy\hfill \\ & =& \int \left[{\left(y-\theta \right)}^{2}-{\left(y-{\theta }^{*}\right)}^{2}\right]{P}_{{\theta }^{*}}\left(y\right)dy\hfill \\ & =& {E}_{{\theta }^{*}}\left[{\left(y-\theta \right)}^{2}\right]-{E}_{{\theta }^{*}}\left[{\left(y-{\theta }^{*}\right)}^{2}\right]\hfill \\ & =& {E}_{{\theta }^{*}}\left[{Y}^{2}-2Y\theta +{\theta }^{2}\right]-1/2\hfill \\ & =& {\left({\theta }^{*}\right)}^{2}+1/2-2{\theta }^{*}\theta +{\theta }^{2}-1/2\hfill \\ & =& {\left({\theta }^{*}-\theta \right)}^{2}\hfill \end{array}$
$⇒{\theta }^{*}\phantom{\rule{0.166667em}{0ex}}\text{maximizes}\phantom{\rule{0.166667em}{0ex}}E\left[log{P}_{\theta }\left(Y\right)\right]\phantom{\rule{0.166667em}{0ex}}\text{wrt}\phantom{\rule{0.166667em}{0ex}}\theta \in \Theta$
$\begin{array}{ccc}\hfill {\stackrel{^}{\theta }}_{n}& =& arg\underset{\theta }{max}\left\{-\sum {\left({Y}_{i}-\theta \right)}^{2}\right\}\hfill \\ & =& arg\underset{\theta }{min}\left\{\sum {\left({Y}_{i}-\theta \right)}^{2}\right\}\hfill \\ & =& \frac{1}{n}\sum _{i=1}^{n}{Y}_{i}\hfill \end{array}$

## Hellinger distance

The KL divergence is not a distance function.

$K\left({P}_{{\theta }_{1}},{P}_{{\theta }_{2}}\right)\ne K\left({P}_{{\theta }_{2}},{P}_{{\theta }_{1}}\right)$

Therefore, it is often more convenient to work with the Hellinger metric,

$H\left({P}_{{\theta }_{1}},{P}_{{\theta }_{2}}\right)={\left(\int ,{\left({P}_{{\theta }_{1}}^{\frac{1}{2}},-,{P}_{{\theta }_{2}}^{\frac{1}{2}}\right)}^{2},d,y\right)}^{\frac{1}{2}}.$

The Hellinger metric is symmetric, non-negative and

$H\left({P}_{{\theta }_{1}},{P}_{{\theta }_{2}}\right)=H\left({P}_{{\theta }_{2}},{P}_{{\theta }_{1}}\right)$

and therefore it is a distance measure. Furthermore, the squared Hellinger distance lower bounds the KL divergence, so convergence in KL divergence implies convergence of the Hellinger distance.

## Proposition 1

${H}^{2}\left({P}_{{\theta }_{1}},{P}_{{\theta }_{2}}\right)\le K\left({P}_{{\theta }_{1}},{P}_{{\theta }_{2}}\right)$

## Proof:

$\begin{array}{ccc}\hfill H\left({P}_{{\theta }_{1}},{P}_{{\theta }_{2}}\right)& =& \int {\left(\sqrt{{P}_{{\theta }_{1}}\left(y\right)},-,\sqrt{{P}_{{\theta }_{2}}\left(y\right)}\right)}^{2}dy\hfill \\ & =& \int {P}_{{\theta }_{1}}\left(y\right)dy+\int {P}_{{\theta }_{2}}\left(y\right)dy-2\int \sqrt{{P}_{{\theta }_{1}}\left(y\right)}\sqrt{{P}_{{\theta }_{2}}\left(y\right)}dy\hfill \\ & =& 2-2\int \sqrt{{P}_{{\theta }_{1}}\left(y\right)}\sqrt{{P}_{{\theta }_{2}}\left(y\right)}dy,\phantom{\rule{1.em}{0ex}}\text{since}\phantom{\rule{0.166667em}{0ex}}\int {P}_{\theta }\left(y\right)dy=1\phantom{\rule{0.166667em}{0ex}}\forall \theta \hfill \\ & =& 2\left(1,-,{E}_{{\theta }_{2}},\left[\sqrt{{P}_{{\theta }_{1}}\left(Y\right)/{P}_{{\theta }_{2}}\left(Y\right)}\right]\right)\hfill \\ & \le & 2log\left({E}_{{\theta }_{2}},\left[\sqrt{{P}_{{\theta }_{2}}\left(Y\right)/{P}_{{\theta }_{1}}\left(Y\right)}\right]\right),\phantom{\rule{1.em}{0ex}}\text{since}\phantom{\rule{0.166667em}{0ex}}1-x\le -logx\hfill \\ & \le & 2{E}_{{\theta }_{2}}\left[log,\sqrt{{P}_{{\theta }_{2}}\left(Y\right)/{P}_{{\theta }_{1}}\left(Y\right)}\right],\phantom{\rule{1.em}{0ex}}\text{by}\phantom{\rule{4.pt}{0ex}}\text{Jensen's}\phantom{\rule{4.pt}{0ex}}\text{inequality}\hfill \\ & =& {E}_{{\theta }_{2}}\left[log,\left(,{P}_{{\theta }_{2}},\left(Y\right),/,{P}_{{\theta }_{1}},\left(Y\right),\right)\right]\phantom{\rule{4pt}{0ex}}\equiv \phantom{\rule{4pt}{0ex}}K\left({P}_{{\theta }_{1}},{P}_{{\theta }_{2}}\right)\hfill \end{array}$

Note that in the proof we also showed that

$H\left({P}_{{\theta }_{1}},{P}_{{\theta }_{2}}\right)=2\left(1,-,\int ,\sqrt{{P}_{{\theta }_{1}}\left(y\right)},\sqrt{{P}_{{\theta }_{2}}\left(y\right)},d,y\right)$

and using the fact $logx\le x-1$ again, we have

$H\left({P}_{{\theta }_{1}},{P}_{{\theta }_{2}}\right)\le -2log\left(\int ,\sqrt{{P}_{{\theta }_{1}}\left(y\right)},\sqrt{{P}_{{\theta }_{2}}\left(y\right)},d,y\right).$

The quantity inside the log is called the affinity between ${P}_{{\theta }_{1}}$ and ${P}_{{\theta }_{2}}$ :

$A\left({P}_{{\theta }_{1}},{P}_{{\theta }_{2}}\right)=\int \sqrt{{P}_{{\theta }_{1}}\left(y\right)}\sqrt{{P}_{{\theta }_{2}}\left(y\right)}dy.$

This is another measure of closeness between ${P}_{{\theta }_{1}}$ and ${P}_{{\theta }_{2}}$ .

## Gaussian distributions

${P}_{\theta }\left(y\right)=\frac{1}{\pi }{e}^{-{\left(y-\theta \right)}^{2}}$
$\begin{array}{ccc}& & -2log\int \sqrt{{P}_{{\theta }_{1}}\left(y\right)}\sqrt{{P}_{{\theta }_{2}}\left(y\right)}dy\hfill \\ & =& -2log\int {\left(\frac{1}{\sqrt{\pi }},{e}^{-{\left(y-{\theta }_{1}\right)}^{2}}\right)}^{\frac{1}{2}}{\left(\frac{1}{\sqrt{\pi }},{e}^{-{\left(y-{\theta }_{2}\right)}^{2}}\right)}^{\frac{1}{2}}dy\hfill \\ & =& -2log\left(\int ,\frac{1}{\sqrt{\pi }},{e}^{-\left[\frac{{\left(y-{\theta }_{1}\right)}^{2}}{2},+,\frac{{\left(y-{\theta }_{2}\right)}^{2}}{2}\right]},d,y\right)\hfill \\ & =& -2log\left(\int ,\frac{1}{\sqrt{\pi }},{e}^{-\left[{\left(y,-,\left(,\frac{{\theta }_{1}+{\theta }_{2}}{2},\right)\right)}^{2},+,{\left(\frac{{\theta }_{1}-{\theta }_{2}}{2}\right)}^{2}\right]},d,y\right)\hfill \\ & =& -2log{e}^{-{\left(\frac{{\theta }_{1}-{\theta }_{2}}{2}\right)}^{2}}\hfill \\ & =& \frac{1}{2}{\left({\theta }_{1}-{\theta }_{2}\right)}^{2}\hfill \end{array}$
$\begin{array}{ccc}& ⇒& -2logA\left({P}_{{\theta }_{1}},{P}_{{\theta }_{2}}\right)=\frac{1}{2}{\left({\theta }_{1}-{\theta }_{2}\right)}^{2}\phantom{\rule{1.em}{0ex}}\text{for}\phantom{\rule{4.pt}{0ex}}\text{Gaussian}\phantom{\rule{4.pt}{0ex}}\text{distributions}\hfill \\ & ⇒& H\left({P}_{{\theta }_{1}},{P}_{{\theta }_{2}}\right)\le \frac{1}{2}{\left({\theta }_{1}-{\theta }_{2}\right)}^{2}\phantom{\rule{1.em}{0ex}}\text{for}\phantom{\rule{4.pt}{0ex}}\text{Gaussian}.\hfill \end{array}$

## Poisson distributions

If ${P}_{\theta }\left(y\right)={e}^{-\theta }\frac{{\theta }^{y}}{y!},\theta \ge 0$ , then

$-2logA\left({P}_{{\theta }_{1}},{P}_{{\theta }_{2}}\right)={\left(\sqrt{{\theta }_{1}}-\sqrt{{\theta }_{2}}\right)}^{2}.$

## Summary

${Y}_{i}\stackrel{iid}{\sim }{P}_{{\theta }^{*}}$
1. Maximum likelihood estimator maximizes the empirical average
$\frac{1}{n}\sum _{i=1}^{n}log{P}_{\theta }\left({Y}_{i}\right)$
(our empirical risk is negative log-likelihood)
2. ${\theta }^{*}$ maximizes the expectation
$E\left[\frac{1}{n},\sum _{i=1}^{n},log,{P}_{\theta },\left({Y}_{i}\right)\right]$
(the risk is the expected negative log-likelihood)
3. $\frac{1}{n}\sum _{i=1}^{n}log{P}_{\theta }\left({Y}_{i}\right)\stackrel{a.s.}{\to }E\left[\frac{1}{n},\sum _{i=1}^{n},log,{P}_{\theta },\left({Y}_{i}\right)\right]$
so we expect some sort of concentration of measure.
4. In particular, since
$\frac{1}{n}\sum _{i=1}^{n}log\frac{{P}_{{\theta }^{*}}\left({Y}_{i}\right)}{{P}_{\theta }\left({Y}_{i}\right)}\stackrel{a.s.}{\to }K\left({P}_{\theta },{P}_{{\theta }^{*}}\right)$
we might expect that $K\left({P}_{{\stackrel{^}{\theta }}_{n}},{P}_{{\theta }^{*}}\right)\to 0$ for the sequence of estimates ${\left\{{P}_{{\stackrel{^}{\theta }}_{n}}\right\}}_{n=1}^{\infty }$ .

So, the point is that maximum likelihood estimator is just a special case of a loss function in learning. Due to its special structure, weare naturally led to consider KL divergences, Hellinger distances, and Affinities.

Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
hi
Loga
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers! By Laurence Bailen By Brooke Delaney By Steve Gibbs By Marion Cabalfin By OpenStax By OpenStax By Rylee Minllic By By JavaChamp Team By OpenStax