# 29.7 Probability: the heisenberg uncertainty principle  (Page 4/11)

 Page 4 / 11

Why don’t we notice Heisenberg’s uncertainty principle in everyday life? The answer is that Planck’s constant is very small. Thus the lower limit in the uncertainty of measuring the position and momentum of large objects is negligible. We can detect sunlight reflected from Jupiter and follow the planet in its orbit around the Sun. The reflected sunlight alters the momentum of Jupiter and creates an uncertainty in its momentum, but this is totally negligible compared with Jupiter’s huge momentum. The correspondence principle tells us that the predictions of quantum mechanics become indistinguishable from classical physics for large objects, which is the case here.

## Heisenberg uncertainty for energy and time

There is another form of Heisenberg’s uncertainty principle     for simultaneous measurements of energy and time . In equation form,

$\Delta E\Delta t\ge \frac{h}{4\pi },$

where $\Delta E$ is the uncertainty in energy    and $\Delta t$ is the uncertainty in time    . This means that within a time interval $\Delta t$ , it is not possible to measure energy precisely—there will be an uncertainty $\Delta E$ in the measurement. In order to measure energy more precisely (to make $\Delta E$ smaller), we must increase $\Delta t$ . This time interval may be the amount of time we take to make the measurement, or it could be the amount of time a particular state exists, as in the next [link] .

## Heisenberg uncertainty principle for energy and time for an atom

An atom in an excited state temporarily stores energy. If the lifetime of this excited state is measured to be ${\text{1.0×10}}^{-\text{10}}\phantom{\rule{0.25em}{0ex}}s$ , what is the minimum uncertainty in the energy of the state in eV?

Strategy

The minimum uncertainty in energy $\Delta E$ is found by using the equals sign in $\Delta E\Delta t\ge h\text{/4}\pi$ and corresponds to a reasonable choice for the uncertainty in time. The largest the uncertainty in time can be is the full lifetime of the excited state, or $\Delta t={\text{1.0×10}}^{-\text{10}}\phantom{\rule{0.25em}{0ex}}s$ .

Solution

Solving the uncertainty principle for $\Delta E$ and substituting known values gives

$\Delta E=\frac{h}{4\pi \Delta t}=\frac{6\text{.}\text{63}×{\text{10}}^{\text{–34}}\phantom{\rule{0.25em}{0ex}}\text{J}\cdot \text{s}}{4\pi \left({\text{1.0×10}}^{\text{–10}}\phantom{\rule{0.25em}{0ex}}\text{s}\right)}=\text{5}\text{.}\text{3}×{\text{10}}^{\text{–25}}\phantom{\rule{0.25em}{0ex}}\text{J.}$

Now converting to eV yields

$\Delta E=\text{(5.3}×{\text{10}}^{\text{–25}}\phantom{\rule{0.25em}{0ex}}\text{J)}\left(\frac{\text{1 eV}}{1\text{.}\text{6}×{\text{10}}^{\text{–19}}\phantom{\rule{0.25em}{0ex}}\text{J}}\right)=\text{3}\text{.}\text{3}×{\text{10}}^{\text{–6}}\phantom{\rule{0.25em}{0ex}}\text{eV}\text{.}$

Discussion

The lifetime of ${\text{10}}^{-\text{10}}\phantom{\rule{0.25em}{0ex}}\text{s}$ is typical of excited states in atoms—on human time scales, they quickly emit their stored energy. An uncertainty in energy of only a few millionths of an eV results. This uncertainty is small compared with typical excitation energies in atoms, which are on the order of 1 eV. So here the uncertainty principle limits the accuracy with which we can measure the lifetime and energy of such states, but not very significantly.

The uncertainty principle for energy and time can be of great significance if the lifetime of a system is very short. Then $\Delta t$ is very small, and $\Delta E$ is consequently very large. Some nuclei and exotic particles have extremely short lifetimes (as small as ${\text{10}}^{-\text{25}}\phantom{\rule{0.25em}{0ex}}\text{s}$ ), causing uncertainties in energy as great as many GeV ( ${\text{10}}^{9}\phantom{\rule{0.25em}{0ex}}\text{eV}$ ). Stored energy appears as increased rest mass, and so this means that there is significant uncertainty in the rest mass of short-lived particles. When measured repeatedly, a spread of masses or decay energies are obtained. The spread is $\Delta E$ . You might ask whether this uncertainty in energy could be avoided by not measuring the lifetime. The answer is no. Nature knows the lifetime, and so its brevity affects the energy of the particle. This is so well established experimentally that the uncertainty in decay energy is used to calculate the lifetime of short-lived states. Some nuclei and particles are so short-lived that it is difficult to measure their lifetime. But if their decay energy can be measured, its spread is $\Delta E$ , and this is used in the uncertainty principle ( $\Delta E\Delta t\ge h\text{/4}\pi$ ) to calculate the lifetime $\Delta t$ .

why static friction is greater than Kinetic friction
draw magnetic field pattern for two wire carrying current in the same direction
An American traveler in New Zealand carries a transformer to convert New Zealand’s standard 240 V to 120 V so that she can use some small appliances on her trip.
What is the ratio of turns in the primary and secondary coils of her transformer?
nkombo
How electric lines and equipotential surface are mutually perpendicular?
The potential difference between any two points on the surface is zero that implies È.Ŕ=0, Where R is the distance between two different points &E= Electric field intensity. From which we have cos þ =0, where þ is the angle between the directions of field and distance line, as E andR are zero. Thus
sorry..E and R are non zero...
By how much leeway (both percentage and mass) would you have in the selection of the mass of the object in the previous problem if you did not wish the new period to be greater than 2.01 s or less than 1.99 s?
what Is linear momentum
why no diagrams
where
Fayyaz
Myanmar
Pyae
hi
Iroko
hello
Abdu
Describe an experiment to determine short half life
what is science
it's a natural phenomena
Hassan
sap
Emmanuel
please can someone help me with explanations of wave
Benedine
there are seven basic type of wave radio waves, gyamma rays (nuclear energy), microwave,etc you can also search 🔍 on Google :-)
Shravasti
A 20MH coil has a resistance of 50 ohms and us connected in series with a capacitor to a 520MV supply
what is physics
it is the science which we used in our daily life
Sujitha
Physics is the branch of science that deals with the study of matter and the interactions it undergoes with energy
Junior
it is branch of science which deals with study of happening in the human life
AMIT
A 20MH coil has a resistance of 50 ohms and is connected in series with a capacitor to a 250MV supply if the circuit is to resonate at 100KHZ, Determine 1: the capacitance of the capacitor 2: the working voltage of the circuit, given that pie =3.142
Musa
Physics is the branch of science that deals with the study of matter and the interactions it undergoes with energy
Kelly
Heat is transfered by thermal contact but if it is transfered by conduction or radiation, is it possible to reach in thermal equilibrium?
Yes, It is possible by conduction if Surface is Adiabatic
Astronomy
Yeah true ilwith d help of Adiabatic
Kelly
what are the fundamentals qualities
what is physic3
Kalilu
what is physic
Kalilu
Physics? Is a branch of science dealing with matter in relation to energy.
Moses
Physic... Is a purging medicine, which stimulates evacuation of the bowels.
Moses
are you asking for qualities or quantities?
Noman
fundamental quantities are, length , mass, time, current, luminous intensity, amount of substance, thermodynamic temperature.
Shravasti
fundamental quantities are quantities that are independent of others and cannot be define in terms of other quantities there is nothing like Qualities we have only fundamental quantities which includes; length,mass,time, electric current, luminous density, temperature, amount of substance etc
give examples of three dimensional frame of reference
Universe
Noman
Yes the Universe itself
Astronomy
Examine different types of shoes, including sports shoes and thongs. In terms of physics, why are the bottom surfaces designed as they are? What differences will dry and wet conditions make for these surfaces?
sports shoes are designed in such a way they are gripped well with your feet and their bases have and high friction surfaces, Thong shoes are for comfort, these are easily removed and light weight. these are usually low friction surfaces but in wet conditions they offer greater friction.
Noman
thong sleepers are usually used in restrooms.
Noman