<< Chapter < Page Chapter >> Page >

Wiskunde

Graad 8

Heelgetalle, vergelykings en meetkunde

Module 7

Heelgetalle en die ordening daarvan

HEELGETALLE

KLASOPDRAG 1

  • Kom ontdek stap vir stap meer omtrent ... wat is heelgetalle, die ordening daarvan en hoe kan jy dit noteer?

1. Wat beteken dit as jy sê ’n persoon is “negatief” ? Verduidelik dit in ’n wiskundige konteks.

2. Wat dink jy is ’n “negatiewe getal” ? Maak gebruik van ’n illustrasie om jou verduideliking te staaf.

3. Noem twee voorbeelde waar jy op hierdie aarde van “negatiewe” getalle gebruik sal maak.

4. Gee ’n definisie van heelgetalle:

5. Watter simbool stel die versameling heelgetalle voor?

6. Hoe sal jy die volgende op ’n getallelyn voorstel (grafies)?

x ≥ -3 ; x size 12{ in } {} Z .

(hoe sal jy die bogenoemde in woorde uitdruk? - alle heelgetalle groter of gelyk aan -3)

-3-2-1012

[ingekleurde kolletjies - dui aan die getal is ingesluit -- dus gelyk aan ook’n ronde sirkel (nie ingekleurde kolletjie) - dui aan die spesifieke getal is nie ingesluit nie]

Verskillende tipes van notasies:

  • Grafies: d.m.v. die gebruik van ’n getallelyn
  • Versamelingskeurdernotasie: { x / x Z , x ≥ -3 }

(lees dit so: versameling x wat so is dat x Z en x groter of gelyk is aan -3)

  • Intervalnotasie: [-3; ∞) , slegs reële getalle kan so aangedui word.

(Getalle groter as -3 tot oneindig aan die positiewe kant)

6.1 Stel nou die volgende grafies (d.m.v. ’n getallelyn) voor:

Trek jou getallelyn:

6.1.1 x <2 , x Z

6.1.2 x ≥ -2 , x ∈ Z

6.1.3 2 ≤ x <5

KLASOPDRAG 2

  • Kom ontdek stap vir stap meer omtrent ... die optel en aftrek van heelgetalle.

Kan jy nog die volgende uit Module 1 onthou?

(+) × of ÷ (+) →

(+) × of ÷ ( - ) →

( - ) × of ÷ ( - ) →

(Bogenoemde gaan jy nodig kry selfs by optel en aftrek van heelgetalle, want onthou:jy mag nooit twee tekens langs mekaar hê nie, jy moet die twee tekens te alle tye met mekaar vermenigvuldig)

Kan jy nog die eienskappe van 0 (nul) onthou? Kyk bietjie hier ....

b × 0 =

b + 0 =

b - 0 =

b 0 size 12{ { {b} over {0} } } {} =

0 b size 12{ { {0} over {b} } } {} =

1. Kan jy die volgende opdragte m.b.v. ’n getallelyn uitvoer?

1.1 3 + 4

1.2 8 - 12

2. Die temperatuur in Bloemfontein is 4 °C. Dit daal met 8 °C.Wat is die temperatuur, huidiglik?

3. Bereken die volgende:

3.1 -5 - 18

3.2 15 - 8 - 17 + 5

3.3 - 30 + 7 - 4

3.4 - 8 + (-5) + (+7)

4. Kan jy aan ’n manier dink om 3.2; 3.3 en 3.4 te doen?

(’n Kort pad ?)

Hoe sal jy die volgende doen?

  • Trek - 5 af van 3

Besluit watter getal moet eerste kom: 3 - (-5)

Onthou nou die reël - vermenigvuldig die twee tekens wat langs mekaar staan.

( - ) × ( - ) → ( + )

  • Dus: 3 + 5 = 8 (Kyk nou hoe maklik is dit)

5. Bereken nou die volgende:

5.1 - 9 - ( -6)

5.2 -18 + (-13) - (-7)

5.3 20 - (25 + 50)

5.4 10 - (16 - 18)

6. Bereken die verskil tussen -31 en -17

7. Vervang ___ deur ’n ( + ) of ( - ) om die volgende bewerings waar te maak:

7.1 - 6 ___ (-3) = -9

7.2 5 ___ (-5) = 10

HUISWERKOPDRAG 1

1. Bereken elk van die volgende:

1.1 13 - 18 + 4 - 17

1.2 - 9 - ( -8 ) + ( - 16 )

1.3 - ( -16 )² + ( -3)²

1.4 ( - 13 )² - ( - 13 )

1.5 [ a + (- b ) ] + b

1.6 [ a + (- b )] + (- a )

1.7 (- b ) + [(- b ) + a ]

1.8 (- y )² - (- x )² - (- x ²)

2. Doen telkens eers ’n berekening en sê dan of die volgende waar of onwaar is.

2.1 - (- x ) = x

Questions & Answers

How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 8. OpenStax CNX. Sep 11, 2009 Download for free at http://cnx.org/content/col11033/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 8' conversation and receive update notifications?

Ask