<< Chapter < Page Chapter >> Page >

Xem phương trình vi phân với hệ số thực hằng, mô tả sự tương quan giữa input và output của hệ tuyến tính không thay đổi theo thời gian.

d n c ( t ) dt n + a n d n 1 c ( t ) dt n 1 + . . . . . . + a 2 dc ( t ) dt + a 1 c ( t ) size 12{ { {d rSup { size 8{n} } c \( t \) } over { ital "dt" rSup { size 8{n} } } } +a rSub { size 8{n} } { {d rSup { size 8{n - 1} } c \( t \) } over { ital "dt" rSup { size 8{n - 1} } } } + "." "." "." "." "." "." +a rSub { size 8{2} } { { ital "dc" \( t \) } over { ital "dt"} } +a rSub { size 8{1} } c \( t \) } {}

= b m + 1 d m r ( t ) dt m + b m d m 1 r ( t ) dt m 1 + . . . + b 2 dr ( t ) dt + b 1 r ( t ) size 12{ {}=b rSub { size 8{m+1} } { {d rSup { size 8{m} } r \( t \) } over { ital "dt" rSup { size 8{m} } } } +b rSub { size 8{m} } { {d rSup { size 8{m - 1} } r \( t \) } over { ital "dt" rSup { size 8{m - 1} } } } + "." "." "." +b rSub { size 8{2} } { { ital "dr" \( t \) } over { ital "dt"} } +b rSub { size 8{1} } r \( t \) } {} (2.5)

Các hệ số a1,a2,…..an và b1, b2…bn là hằng thực vànm.

Một khi r(t) với tto và những điều kiện đầu của c(t) và các đạo hàm của nó được xác định tại thời điểm đầu t=t0, thì output c(t) với tt0 sẽ được xác định bởi phương trình (2.5). Nhưng, trên quan điểm phân giải và thiết kế hệ thống, phương pháp dùng phương trình vi phân để mô tả hệ thống thì rất trở ngại. Do đó, phương trình (2.5) ít khi được dùng trong dạng ban đầu để phân tích và thiết kế.

Thực quan trọng để nhớ rằng, mặc dù những chương trình có hiệu quả trên máy tính digital thì cần thiết để giải các phương trình vi phân bậc cao, nhưng triết lý căn bản của lý thuyết điều khiển hệ tuyến tính là: các kỹ thuật phân giải và thiết kế sẽ tránh các lời giải chính xác của hệ phương trình vi phân, trừ khi các lời giải trên máy tính mô phỏng được đòi hỏi.

Để được hàm chuyển của hệ tuyến tính mô tả bởi phương trình (2.5) , ta lấy biến đổi Laplace ở cả hai vế, với sự giả định các điều kiện đầu là zero.

(Sn+anSn-1+…+a2S+a1)C(S)=(bm+1Sm+bmSm-1+…+b2S+b1)R(S) (2.6)

Hàm chuyển: G ( s ) = C ( s ) R ( s ) = b m + 1 S m + b m S m 1 + . . . + b 2 S + b 1 S n + a n S n 1 + . . . + a 2 S + a 1 size 12{G \( s \) = { {C \( s \) } over {R \( s \) } } = { {b rSub { size 8{m+1} } S rSup { size 8{m} } +b rSub { size 8{m} } S rSup { size 8{m - 1} } + "." "." "." +b rSub { size 8{2} } S+b rSub { size 8{1} } } over {S rSup { size 8{n} } +a rSub { size 8{n} } S rSup { size 8{n - 1} } + "." "." "." +a rSub { size 8{2} } S+a rSub { size 8{1} } } } } {} (2.7)

 Có thể tóm tắt các tính chất của hàm chuyển như sau:

*Hàm chuyển chỉ được định nghĩa cho hệ tuyến tính không thay đổi theo thời gian.

* Hàm chuyển giữa một biến vào và một biến ra của hệ được định nghĩa là biến đổi Laplace của đáp ứng xung lực. Măt khác, hàm chuyển là tỷ số của biến đổi Laplace của output và input.

* Khi xác định hàm chuyển, tất cả điều kiện đầu đều đặt zero.

* Hàm chuyển thì độc lập với input của hệ.

* Hàm chuyển là một hàm biến phức S. Nó không là hàm biến thực theo thời gian, hoặc bất kỳ một biến nào được dùng như một biến độc lập.

  • Khi một hệ thuộc loại dữ liệu vào digital, việc mô tả nó bằng các phương trình vi phân sẽ tiện lợi hơn. Và hàm chuyển trở thành một hàm biến phức Z. Khi đó, biến đổi Z sẽ được sử dụng.

Hàm chuyển của hệ đa biến.

Định nghĩa của hàm chuyển dễ được mở rộng cho một hệ thống với nhiều input và nhiều output. Một hệ như vậy được xem là hệ đa biến. Phương trình (2.5) cũng được để mô tả sự tương quan giữa các input và output của nó.

Khi xét sự tương quan giữa một input và một output, ta giả sử các input khác là zero. Rồi dùng nguyên lý chồng chất (super position) cho một hệ tuyến tính, để xác định một biến số ra nào đó do hậu quả của tất cả các biếùn vào tác đôïng đồng thời, bằng cách cộng tất cả các output do từng input tác động riêng lẽ.

Một cách tổng quát, nếu một hệ tuyến tính có p input và có q output, hàm chuyển giữa output thứ i và input thứ j được định nghĩa là:

Gij(s) = C i ( s ) R j ( s ) size 12{ { {C rSub { size 8{i} } \( s \) } over {R rSub { size 8{j} } \( s \) } } } {} (2.8)

Với Rk(s)=0 ; k=1,2...p ; k j

Lưu ý :phương trình (2.8) chỉ được định nghĩa với input thứ j, các input khác đều zero.

Nếu các input tác đôïng đồng thời, biến đổi Laplace của output thứ i liên hệ với biến đổi Laplace của tất cả các input theo hệ thức .

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Cơ sở tự động học. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10756/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Cơ sở tự động học' conversation and receive update notifications?

Ask