# 0.6 Solution of the partial differential equations  (Page 4/13)

 Page 4 / 13

Suppose one wished to find the solution to the Poisson equation in the semi-infinite domain, $y>0$ with the specification of either $u=0$ or $\partial u/\partial n=0$ on the boundary, $y=0$ . Denote as ${u}^{0}\left(x,y,z\right)$ the solution to the Poisson equation for a distribution of sources in the semi-infinite domain $y>0$ . The solutions for the Dirichlet or Neumann boundary conditions at $y=0$ are as follows.

$\begin{array}{c}u\left(x,y,z\right)={u}^{0}\left(x,y,z\right)-{u}^{0}\left(x,-y,z\right),\phantom{\rule{1.em}{0ex}}\text{for}\phantom{\rule{0.277778em}{0ex}}u=0\phantom{\rule{0.277778em}{0ex}}at\phantom{\rule{0.277778em}{0ex}}y=0\hfill \\ u\left(x,y,z\right)={u}^{0}\left(x,y,z\right)+{u}^{0}\left(x,-y,z\right),\phantom{\rule{1.em}{0ex}}\text{for}\phantom{\rule{0.277778em}{0ex}}du/dy=0\phantom{\rule{0.277778em}{0ex}}at\phantom{\rule{0.277778em}{0ex}}y=0\hfill \end{array}$

The first function is an odd function of $y$ and it vanishes at $y=0$ . The second is an even function of y and its normal derivative vanishes at $y=0$ .

An example of the method of images to satisfy either the Dirichlet or Neumann boundary conditions is illustrated in the following figure. The black curve is the response to a line sink at $x=1.5$ . We desire to have either the function or the derivative at $x=0$ to vanish. The red curve is a line sink at $x=-1.5$ . The sum of the two functions is symmetric about $x=0$ and has zero derivative there. The difference is anti-symmetric about $x=0$ and vanishes at $x=0$ .

Now suppose there is a second boundary that is parallel to the first, i.e. $y=a$ that also has a Dirichlet or Neumann boundary condition. The domain of the Poisson equation is now $0 . Denote as ${u}^{1}$ the solution that satisfies the $BC$ at $y=0$ . A solution that satisfies the Dirichlet or Neumann boundary conditions at $y=a$ are as follows.

$\begin{array}{c}u\left(x,y,z\right)={u}^{1}\left(x,y,z\right)-{u}^{1}\left(x,2a-y,z\right),\phantom{\rule{1.em}{0ex}}\text{for}\phantom{\rule{0.277778em}{0ex}}u=0\phantom{\rule{0.277778em}{0ex}}\text{at}\phantom{\rule{0.277778em}{0ex}}y=a\hfill \\ u\left(x,y,z\right)={u}^{1}\left(x,y,z\right)+{u}^{1}\left(x,2a-y,z\right),\phantom{\rule{1.em}{0ex}}\text{for}\phantom{\rule{0.277778em}{0ex}}du/dy=0\phantom{\rule{0.277778em}{0ex}}\text{at}\phantom{\rule{0.277778em}{0ex}}y=a\hfill \end{array}$

This solution satisfies the solution at $y=a$ , but no longer satisfies the solution at $y=0$ . Denote this solution as ${u}^{2}$ and find the solution to satisfy the $BC$ at $y=0$ . By continuing this operation, one obtains by induction a series solution that satisfies both boundary conditions. It may be more convenient to place the boundaries symmetric with respect to the axis in order to simplify the recursion formula.

## Assignment 7.3

Calculate the solution for a unit line source at the origin of the $x$ , $y$ plane with zero flux boundary conditions at $y=+1$ and $y=-1$ . Prepare a contour plot of the solution for $0 . What is the limiting solution for large $x$ ? Note: The boundary conditions are conditions on the derivative. Thus the solution is arbitrary by a constant.

## Existence and uniqueness of the solution to the poisson equation

If the boundary conditions for Poisson equation are the Neumann boundary conditions, there are conditions for the existence to the solution and the solution is not unique. This is illustrated as follows.

$\begin{array}{c}{\nabla }^{2}u=-\rho \phantom{\rule{1.em}{0ex}}\text{in}\phantom{\rule{0.277778em}{0ex}}V,\phantom{\rule{1.em}{0ex}}\phantom{\rule{1.em}{0ex}}\mathbf{n}•\nabla u=f\phantom{\rule{0.277778em}{0ex}}\text{on}\phantom{\rule{0.277778em}{0ex}}S\hfill \\ \phantom{\rule{0.277778em}{0ex}}\int \int \int \phantom{\rule{0.277778em}{0ex}}{\nabla }^{2}u\phantom{\rule{0.166667em}{0ex}}dV=-\phantom{\rule{0.277778em}{0ex}}\int \int \int \phantom{\rule{0.277778em}{0ex}}\rho \phantom{\rule{0.166667em}{0ex}}dV\hfill \\ \int \phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}\int \phantom{\rule{-11.66656pt}{0ex}}◯\mathbf{n}\nabla u\phantom{\rule{0.166667em}{0ex}}dS=-\phantom{\rule{0.277778em}{0ex}}\int \int \int \phantom{\rule{0.277778em}{0ex}}\rho \phantom{\rule{0.166667em}{0ex}}dV\hfill \\ \int \phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}\int \phantom{\rule{-11.66656pt}{0ex}}◯f\phantom{\rule{0.166667em}{0ex}}dS=-\phantom{\rule{0.277778em}{0ex}}\int \int \int \phantom{\rule{0.277778em}{0ex}}\rho \phantom{\rule{0.166667em}{0ex}}dV\hfill \end{array}$

This necessary condition for the existence of a solution is equivalent to the statement that the flux leaving the system must equal the sum of sources in the system. The solution to the Poisson equation with the Neumann boundary condition is arbitrary by a constant. If a constant is added to a solution, this new solution will still satisfy the Poisson equation and the Neumann boundary condition.

## Green's function for the diffusion equation

We showed above how the solution to the Poisson equation with homogeneous boundary conditions could be obtained from the Green's function by convolution and method of images. Here we will obtain the Green's function for the diffusion equation for an infinite domain in one, two, or three dimensions. The Green's function is for the parabolic PDE

what is economic
what are the type of economic
Charles
macroeconomics,microeconomics,positive economics and negative economics
what are the factors of production
process of production
Mutia
Basically factors of production are four (4) namely: 1. Entrepreneur 2. Capital 3. Labour and; 4. Land but there has been a new argument to include an addition one to the the numbers to 5 which is "Technology"
Elisha
what is land as a factor of production
what is Economic
Abu
economics is how individuals bussiness and governments make the best decisions to get what they want and how these choices interact in the market
Nandisha
Economics as a social science, which studies human behaviour as a relationship between ends and scarce means, which have alternative uses.
Yhaar
how will a country's population be equal to it's labour force
what is the meaning of ppf
What is Economic
economic
Nwosu
Economics is the social science that deals with the unlimited human wants in the face of scarce (limited in supply) resources.
Azka
what is market
marker is the interaction of buying and selling
David
market refers to the interaction of the processes of buying and selling of commodities between the buyer and the seller.
stephen
market is a place where two parties gather to facilitate exchange of goods and services.
Yhaar
what are some good sources of information to find trends in various Industries
James
how do on know that marketing is going on
Mutia
what is consumption
Raj
Using revenue
Prince
What is stock market
Prince
What are the marmet function
price elasticity of demand is the degree of responsiveness of a quantity demanded to the change in price of the commodity in question.
What does elasticity mean
Prince
Elasticity means change in demand with the change in price. It is elastic if the demand changes with the price change whereas it is inelastic if the demand is not affected due to change in price
Devesh
Okay
Olatunde
meaning
KP
okay
Binta
I have a question
Binta
what is the importance of learning economics?
it helps to make the correct choice
it helps firm to produce products that will bring more profit
the difference between needs and wants
needs are things that we basically can't live without wants are just luxury things
Thelma
needs are things without them we can't live but want are things without we can live
KP
what is education
KP
it's a process in which we give or receiving methodical instructions
Thelma
what is mixed economy
Amex
who are u?
Lamine
haha
Cleaford
scarm
nura
what it this
Cleaford
hi y'all
Dope
how does group chat help y'all 🤔
Dope
hi y'all
Dope
how does group chat help y'all 🤔
Dope
how does group chat help y'all 🤔
Dope
to learn from one another
Lamine
oh okay
Dope
😟
Creative
Yes
Lamine
what is type of economic
how to understand basics of economics
what is demand schedle
When you make a Scedule of the demand you made
Rodeen
What is macroeconomics
It's one of the two branches of Economics that deal with the aggregate economy.
Mayen
it's about inflation, occupation, gdp and so on
alberto
What is differences between Microeconomics and Macroeconomic?
Bethrand
microeconomics focuses on the action of individual agents in the economy such as businesses, workers and household. while macroeconomics looks at the economy as a whole. it focuses on broad issues in the economy such as government deficit, economy growth, levels of exports and imports, and
Thelma
inflationary increase in prices
Thelma
Got questions? Join the online conversation and get instant answers!