<< Chapter < Page Chapter >> Page >

Inleiding

In graag 10 het jy verskillende grafieke se vorms bestudeer. In hierdie hoofstuk sal jy leer van grafieke van funksies.

Funksies in die vorm y = a x + p + q

Hierdie vorm van die hiperboliese funksie is effens meer kompleks as die vorms wat in graad 10 teëgekom is.

Algemene vorm en posisie van die grafiek van ‘n funksie in die vorm f ( x ) = a x + p + q . Die asimptote word aangedui as stippellyne.

Ondersoek: funksies van die vorm y = a x + p + q

  1. Op dieselfde assestelsel, teken die volgende grafieke:
    1. a ( x ) = - 2 x + 1 + 1
    2. b ( x ) = - 1 x + 1 + 1
    3. c ( x ) = 0 x + 1 + 1
    4. d ( x ) = 1 x + 1 + 1
    5. e ( x ) = 2 x + 1 + 1
    Gebruik die resultate om die effek af te lei van Use your results to deduce the effect of a .
  2. Op dieselfde assestelsel, teken die volgende grafieke:
    1. f ( x ) = 1 x - 2 + 1
    2. g ( x ) = 1 x - 1 + 1
    3. h ( x ) = 1 x + 0 + 1
    4. j ( x ) = 1 x + 1 + 1
    5. k ( x ) = 1 x + 2 + 1
    Gebruik jou resultate om die effekte af te lei van p .
  3. Deur die algemene metode van die bogenoemde aktiwiteite, kies jou eie waardes van a en p om 5 verskillende grafieke te teken van y = a x + p + q om die effekte van q af te lei.

Jy behoort te gevind het dat die teken van a beïnvloed of die grafiek in die eerste en derde of in die tweede en vierde kwadrant van die Cartesiese vlak is.

Jy sou ook gevind het dat die waarde vand p beïnvloed of die x -afsnit negatief ( p > 0 ) of positief( p < 0 ) is.

Jy behoort ook te gevind het dat die waarde van q beïnvloed of die grafiek bo die x -as ( q > 0 ) of onder die x -as ( q < 0 ) lê.

Hierdie verskillende eienskappe word opgesom in [link] . Die asse van simmetrie vir elke grafiek word vertoon as ‘n stippellyn.

Tabel wat die algemene vorms en posisies opsom van funksies in die vorm y = a x + p + q . Die asse van simmetrie word vertoon as stippellyne.
p < 0 p > 0
a > 0 a < 0 a > 0 a < 0
q > 0
q < 0

Gebied en terrein

Vir y = a x + p + q , is die funksie ongedefinieerd vir x = - p . Die gebied is daarom { x : x R , x - p } .

Ons sien dat y = a x + p + q kan herskryf word as:

y = a x + p + q y - q = a x + p As x - p dan is : ( y - q ) ( x + p ) = a x + p = a y - q

Dit wys dat die funksie ongedefinieerd is by y = q . Die terrein van f ( x ) = a x + p + q is daarom { f ( x ) : f ( x ) R , f ( x ) q .

Byvoorbeeld, die gebied van g ( x ) = 2 x + 1 + 2 is { x : x R , x - 1 } want g ( x ) is ongedefinieerd by x = - 1 .

y = 2 x + 1 + 2 ( y - 2 ) = 2 x + 1 ( y - 2 ) ( x + 1 ) = 2 ( x + 1 ) = 2 y - 2

Ons kan sien dat g ( x ) is ongedefinieerd by y = 2 . Daarom is die gebied { g ( x ) : g ( x ) ( - , 2 ) ( 2 , ) } .

Gebied en terrein

  1. Bepaal die terrein van y = 1 x + 1 .
  2. Gegewe: f ( x ) = 8 x - 8 + 4 . Write down the domain of f .
  3. Bepaal die gebied van y = - 8 x + 1 + 3

Afsnitte

Vir funksies van die vorm, y = a x + p + q , word die afsnitte met die x en y assebereken deur x = 0 te stel vir die y -afsnit en deur y = 0 te stel vir die x -afsnit.

The y -intercept is calculated as follows:

y = a x + p + q y i n t = a 0 + p + q = a p + q

Byvoorbeeld, die y -afsnit van g ( x ) = 2 x + 1 + 2 word verkry deur x = 0 te stel, wat lewer:

y = 2 x + 1 + 2 y i n t = 2 0 + 1 + 2 = 2 1 + 2 = 2 + 2 = 4

Die x -afsnitte word bereken deur y = 0 te stel as volg:

y = a x + p + q 0 = a x i n t + p + q a x i n t + p = - q a = - q ( x i n t + p ) x i n t + p = a - q x i n t = a - q - p

Byvoorbeeld, die x -afsnit van g ( x ) = 2 x + 1 + 2 word gegee deur x = 0 te stel om die volgende te kry:

y = 2 x + 1 + 2 0 = 2 x i n t + 1 + 2 - 2 = 2 x i n t + 1 - 2 ( x i n t + 1 ) = 2 x i n t + 1 = 2 - 2 x i n t = - 1 - 1 x i n t = - 2

Afsnitte

  1. Gegewe: h ( x ) = 1 x + 4 - 2 . Bepaal die koördinate van die afsnitte van h met die x- en y-asse.
  2. Bepaal die x-afsnit van die grafiek van y = 5 x + 2 . Hoekom is daar geen y-afsnit vir hierdie funksie nie?

Asimptote

Daar is twee asimptote vir funksies van die vorm y = a x + p + q . Hulle word bepaal deur die gebied en terrein te ondersoek.

Ons het gesien dat die funksie ongedefinieerd was by x = - p en vir y = q . Daarom is die asimptote x = - p en y = q .

Byvoorbeeld, die gebied van g ( x ) = 2 x + 1 + 2 is { x : x R , x - 1 } because g ( x ) is ongedefinieerd by x = - 1 . Ons sien ook dat g ( x ) is ongedefinieerd by y = 2 . Daarom is die terrein { g ( x ) : g ( x ) ( - , 2 ) ( 2 , ) } .

Hieruit kan ons aflei dat die asimptote lê by x = - 1 en y = 2 .

Asimptote

  1. Gegewe: h ( x ) = 1 x + 4 - 2 . Bepaal die vergelykings van die asimptote van h .
  2. Skryf die vergelyking neer van die vertikale asimptoot van die funksie y = 1 x - 1 .

Teken grafieke van die vorm f ( x ) = a x + p + q

Ten einde grafieke te teken van funksies van die vorm, f ( x ) = a x + p + q , moet ons vier eienskappebepaal met berekeninge:

  1. gebied en terrein
  2. asimptote
  3. y -afsnit
  4. x -afsnit

Byvoorbeeld, teken die grafiek van g ( x ) = 2 x + 1 + 2 . Dui die afsnitte en asimptote aan.

Ons het bepaal dat die gebied is { x : x R , x - 1 } en die terrein is { g ( x ) : g ( x ) ( - , 2 ) ( 2 , ) } . Daarom is die asimptote by x = - 1 en y = 2 .

Die y -intercept is y i n t = 4 en die x -afsnit is x i n t = - 2 .

Grafiek van g ( x ) = 2 x + 1 + 2 .

Grafieke

  1. Teken die grafiek van y = 1 x + 2 . Dui die horisontale asimptoot aan.
  2. Gegewe: h ( x ) = 1 x + 4 - 2 . Teken die grafiek van h en dui duidelik die asimptote en ALLE afsnitte met die asse.
  3. Teken die grafiek van y = 1 x en y = - 8 x + 1 + 3 op die selfdeassestelsel.
  4. Teken die grafiek van y = 5 x - 2 , 5 + 2 . Verduidelik jou metode.
  5. Teken die grafiek van die funksie gedefinieer deur y = 8 x - 8 + 4 . Dui die asimptote en die afsnitte met die asse aan.

Einde van die hoofstuk oefeninge

  1. Teken die grafeik van die hiperbool gedefinieer deur y = 2 x vir - 4 x 4 . Veronderstel die hiperbool word geskuif met 3 eenhede na regs en 1 eenheid af. Wat is die nuwe vergelyking nou?
  2. Gebaseer op die grafiek van y = 1 x , bepaal die vergelyking van grafiek met asimptote y = 2 en x = 1 wat deur die punt (2; 3) gaan.

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
in a comparison of the stages of meiosis to the stage of mitosis, which stages are unique to meiosis and which stages have the same event in botg meiosis and mitosis
Leah Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Siyavula textbooks: wiskunde (graad 11). OpenStax CNX. Sep 20, 2011 Download for free at http://cnx.org/content/col11339/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: wiskunde (graad 11)' conversation and receive update notifications?

Ask