<< Chapter < Page Chapter >> Page >


Graad 8


(natuurlike- en telgetalle)

Module 3


Die “wonderwêreld” rondom ALGEBRA


  • Kom ontdek stap vir stap meer oor die ALGEBRA....
  • In Algebra maak ons van letters gebruik in die plek van onbekendes (dit wat ons nie weet nie).
  • ‘n Letter stel ‘n veranderlike (waarde wat kan verander) voor en ‘n getal is die konstante (die waarde bly dieselfde).
  • Wat gebeur by die vermenigvuldiging en deling van ( + ) en ( - ) tekens?
  • Die volgende:
  • ( + ) x of ÷ ( + ) = ( + )
  • ( - ) x of ÷ ( - ) = ( + )
  • ( + ) x of ÷ ( - ) = ( - )

1. Bestudeer die volgende in julle groepe en beantwoord die daaropvolgende vrae:

( 1 4 x 2 x ) 4 + 6 size 12{ { { \( { { size 8{1} } over { size 8{4} } } x rSup { size 8{2} } ` - `x \) } over {4} } `+`6} {}

  • Dui die volgende aan:

1.1 aantal terme

1.2 koëffisiënt van x size 12{x} {}

1.3 konstante

1.4 graad van die uitdrukking

2. Ons kan nou deur van veranderlikes gebruik te maak die volgende in wiskunde se “wondertaal” omskryf d.w.s as algebraïese uitdrukkings.

Kyk of jy nou die volgende as algebraïese uitrukkings kan skryf:

Gegee Algebraïese Uitdrukking
2.1 Die som van ‘n getal en 7
2.2 ‘n Getal vermeerder met 7
2.3 Die verskil tussen a en b
2.4 6 minder as ‘n getal verminder met 7
2.5 Die produk van ‘n getal en b
2.6 Kwosiënt van ‘n getal en 7
2.7 Vierkant van a
2.8 Vierkantswortel van a
2.9 Trek die verskil tussen a en b af van hul produk

3. Kyk of jy ‘n formule vir die volgende kan bepaal en voltooi dan die tabel.

x size 12{x} {} 2 5 8 10 15 47
y 7 11 17

formule: y =


1. Bepaal ‘n formule vir elk van die volgende en voltooi dan die tabel.

1.1 formule: y = ……………………………………………………

x size 12{x} {} 2 5 8 9 12 20
y 10 16 22

1.2 formule: y = ……………………………………………………

x size 12{x} {} 3 7 10 9 12 20
y 12 32 47

1.3 formule: y = ……………………………………………………

x size 12{x} {} 1 3 4 9 12 20
y 1 9 16

1.4 formule: y = ……………………………………………………

x size 12{x} {} 1 2 3 6 7 10
y 1 8 27

1.5 formule: y = ……………………………………………………

x size 12{x} {} 1 2 4 9 12 20
y 2 5 17

2. Vuurhoutjies word gerangskik om vierkante te vorm.

2.1 Maak nou ‘n skets om vier vierkante te vorm, en dui aan hoeveel vuurhoutjies jy daarvoor gebruik het.

Vuurhoutjies …………………………

2.2 Kan jy nou ‘n formule bepaal om vinnig te bepaal hoeveel vuurhoutjies jy benodig het om ( x size 12{x} {} ) aantal vierkante te vorm?

y = ……………………………………… (waar y die aantal vuurhoutjies voorstel)

2.3 Bepaal nou m.b.v. jou formule hoeveel vuurhoutjies jy sal benodig om 110 vierkante te vorm.

2.4 Bepaal hoeveel vierkante jy kan vorm as jy 2 005 vuurhoutjies het.

3. Beskou die volgende uitdrukking en beantwoord die vrae wat volg:

1 4 a + a 2 5 + 7 + 3a 3 size 12{ - { {1} over {4} } a``+`` { {a rSup { size 8{2} } } over {5`} } ``+`7`+"3a" rSup { size 8{3} } } {}

3.1 Rangskik die uitdrukking in stygende magte van a.

3.2 Bepaal:

3.2.1 aantal terme

3.2.2 koëffisiënt van a ²

3.2.3 graad van die uitdrukking

3.2.4 konstante term

3.2.5 die waarde van die uitdrukking as a = -2

4. Skryf ‘n algebraïese uitdrukking vir elk van die volgende neer.

4.1 die produk van a en p , vermeerder met die som van a en p.

4.2 die som van a en p , word vermenigvuldig met 3.

4.3 die kwosiënt van a en p word vermeerder met 3.

4.4 ‘n busrit kos p rand per km, indien 45 km afgelê word, bereken die totale koste van die busrit.

4.5 5 word by die produk van 3 en a getel, en die antwoord word met die som van 9 en b verminder.

5. Jy huur ‘n motor by Kaapstad Internasionale Lughawe teen R 125,50 per dag.

5.1 Stel ‘n tabel op wat aandui hoeveel dit jou vir die volgende aantal dae sal kos, om die motor te huur : 6; 7; ..... 12 dae.

Questions & Answers

what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Wiskunde graad 8. OpenStax CNX. Sep 11, 2009 Download for free at http://cnx.org/content/col11033/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 8' conversation and receive update notifications?