<< Chapter < Page Chapter >> Page >

Wiskunde

Graad 4

Ruimte en vorm, patrone, datahantering

Module 14

Ondersoek die oppervlak van veelhoeke

Aktiwiteit 1:

Om die oppervlak van veelhoeke (met behulp van vierkantige roosters en teëls) te ondersoek en skat om 'n begrip van vierkanteenhede te ontwikkel [LU 4.8]

  • Jy besef nou dat wanneer ons tessellasie doen, 'n plat vlak heeltemal bedek word sodat daar geen spasies of oorvleueling is nie.

1. Vierkantige blokke wat deur jou hand bedek word.

1.1 Werk versigtig en plaas jou hand, met vingers oopgesprei, op die geruite deel van die papier hier onder. Trek 'n potloodlyn reg rondom jou hand op die papier, tot by die gewrig. Lig jou hand. Daar sien jy nou jou hand se buitelyn. Wat ons wil doen, is om te sien hoeveel vierkantige blokkies jou hand bedek het.

1.2 Maak 'n kolletjie in elke volledige blokkie soos jy hulle tel, en skryf die totaal volledige blokkies in die tabel op die volgende bladsy. Soek nou al die plekke waar 'n halwe blokkie bedek is. Twee halwe blokkies maak een hele blok. Maak dus 'n kolletjie in elke halwe blokkie en tel hulle as hele blokkies. Skryf die getal neer. Sit nou dié waarvan minder as die helfte bedek is by dié waarvan meer as die helfte bedek is om nog meer hele blokke te maak. Skryf ook hierdie totaal neer. Dit behoort nou vir jou 'n benaderde idee te gee van hoeveel blokkies deur jou hand bedek word.

Vierkantige blokkies wat deur my hand bedek is

Hele blokkies Halwe blokkies wat tot heles gemaak is Ander dele wat tot hele blokke gemaak is Totale getal blokkies wat deur my hand bedek word.

1.3 Kleur nou die vorm van jou hand op die papier in.

2. Tel die aantal vierkantige blokkies wat deur die volgende vorm bedek word op dieselfde manier. Sit dan al die blokkies bymekaar om hele blokke te maak. (Maak kolletjies in die blokkies, terwyl jy tel as dit jou help om dit reg te doen.)

Totale getal vierkantige blokkies wat bedek word:

3. Tel die blokkies wat deur die volgende veelhoeke bedek word:

3. 1 vierkantige blokkies

3.2 vierkantige blokkies

Meet die vierkantige blokkies met jou liniaal. Hulle is 1 cm lank en 1 cm wyd . In plaas daarvan om van "vierkantige blokkies" te praat, kan ons hulle dus VIERKANT SENTIMETERS noem.

4. Vind nou uit hoeveel vierkant sentimeters deur elk van die volgende veelhoeke bedek word:

4.1 _____________ vierkant cm

4.2 _____________ vierkant cm

5. Kom ons maak of jy 'n pophuis vir 'n niggietjie gebou het. Jy het die vloer van die badkamer met papier bedek waarop jy 1 cm vierkantblokkies getrek het. Op die vloer is daar 'n badmatjie, soos hieronder. Hoeveel van die teëls word deur die badmatjie bedek?

  • Verduidelik vir jou maat hoe jy die antwoord bereken het.
  • Skryf neer hoe jy jou antwoord bereken het. Skryf ook jou antwoord neer. Onthou om “vierkant cm” by die antwoord te skryf.

6. In die gesinskamer is daar 'n mat wat 4 m lank en 3 m wyd is.

6.1 Teken 'n diagram om te toon hoe die mat lyk en skryf ook die lengte en die breedte in.

6.2 Bereken hoeveel vierkant meters van die vloer deur die mat bedek word. Skryf jou berekening en die antwoord neer. Onthou om “vierkant meter" by die antwoord te skryf.

Questions & Answers

anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 4. OpenStax CNX. Sep 18, 2009 Download for free at http://cnx.org/content/col11100/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 4' conversation and receive update notifications?

Ask