<< Chapter < Page Chapter >> Page >


ʼn Vierkant is ʼn rombus met al vier sye ewe lank en al vier hoeke gelyk aan 90 .

ʼn Opsomming van die eienskappe van ʼn vierkant:

  • Beide pare teenoorstaande sye is parallel.
  • Al vier sye is ewe lank.
  • Al vier die hoeke is 90 .
  • Beide pare teenoorstaande hoeke is ewe groot.
  • Die hoeklyne halveer mekaar met hoeke van 90 .
  • Diagonale is ewe lank.
  • Diagonale halveer beide pare teenoorstaande hoeke (d.w.s. hulle is almal 45 ).
ʼn Voorbeeld van ʼn vierkant - ʼn rombus met al die hoeke gelyk aan 90


ʼn Vlieër is ʼn vierhoek met twee pare aangrensende sye ewe lank.

ʼn Oposmming van die eienskappe van ʼn vlieër is:

  • Twee pare aangrensende sye is ewe lank.
  • Een paar teenoorstaande hoeke (die hoeke tussen die ongelyke sye) is ewe groot.
  • Een diagonaal halveer die ander een en hierdie diagonaal halveer ook een paar teenoorstaande hoeke.
  • Diagonale sny mekaar reghoekig.
ʼn Voorbeeld van ʼn vlieër

Reghoeke is ʼn spesiale geval (ʼn deelversameling) van die parallelogramme. Reghoeke is parallelogramme met alle hoeke regte hoeke. Vierkante is ʼn spesiale geval (deelversameling) van die reghoeke. Vierkante is reghoeke met al vier sye ewe lank. So, alle vierkante is parallelogramme én reghoeke. As jy gevra word om te bewys dat ʼn vierhoek ʼn parallelogram is, is dit genoeg om aan te toon dat beide pare teenoorstaande sye parallel is. Maar, as jy gevra word om te bewys dat ʼn vierhoek ʼn vierkant is, dan moet jy ook wys dat al die hoeke regte hoeke is én dat al die sye ewe lank is.


Veelhoeke is oral rondom ons. ʼn Stopteken het die vorm van ʼn agthoek, m.a.w. ʼn agthoekige veelhoek. Die heuningkoek van ʼn bynes bestaan uit heksagonale selle. Die oppervlak van ʼn tafel is dikwels ʼn reghoek.

In hierdie afdeling sal jy leer van gelykvormige veelhoeke.

Gelykvormigheid tussen veelhoeke

Bespreking: gelykvormige driehoeke

Gebruik die diagram om die tabel in te vul en beantwoord die vrae wat daarop volg.

AB DE = . . . c m . . . c m = . . . A ^ =... D ^ ...
BC EF = . . . c m . . . c m = . . . B ^ =... E ^ =...
AC DF = . . . c m . . . c m = . . . C ^ ... F ^ =...

  1. Wat kan jy sê oor jou berekening van: AB DE , BC EF , AC DF ?
  2. Wat kan jy sê oor A ^ en D ^ ?
  3. Wat kan jy sê oor B ^ en E ^ ?
  4. Wat kan jy sê oor C ^ en F ^ ?

As twee veelhoeke gelykvormig is, is die een ʼn vergroting van die ander. Dit beteken dat die veelhoeke dieselfde grootte hoeke sal hê en dat hulle sye in verhouding tot mekaar sal wees.

Die simbool wat ons gebruik om gelykvormigheid aan te dui is ||| .

Gelykvormige Veelhoeke

Twee veelhoeke is gelykvormig as:

  1. hulle ooreenstemmende hoeke ewe groot is, én
  2. hulle ooreenstemmende sye eweredig is (die verhouding van die sylengtes gelyk is.)

Bewys dat die volgende twee veelhoeke gelykvormig is.

  1. Daar word gevra om te bewys dat ʼn paar veelhoeke gelykvormig is. Ons kan dit doen deur te bewys dat die verhouding van ooreenstemmende sye gelyk is en dat die ooreenstemmende hoeke ewe groot is.

  2. Die hoeke en hul groottes word gegee, so ons kan bewys dat hulle ewe groot is.

  3. Al die hoeke is 90 groot en

    A ^ = E ^ B ^ = F ^ C ^ = G ^ D ^ = H ^
  4. Eerstens moet ons kyk watter sye ooreenstem. Die reghoeke het twee lang sye wat gelyk is en twee kort sye wat gelyk is. Ons moet die verhoudings van die lang sye van die twee reghoeke vergelyk en ons moet die verhoudings van die kort sye vergelyk.

    Lang sye, groot reghoek se waardes op die klein reghoek se waardes:

    Verhouding = 2 L L = 2

    Kort sye, groot reghoek se waardes op die klein reghoek se waardes:

    Verhouding = L 1 2 L = 1 1 2 = 2

    Die verhouding van die ooreenstemmende sye is gelyk, twee in hierdie geval.

  5. Die ooreenstemmende hoeke is ewe groot en die verhoudings van die ooreenstemmende sye is gelyk, dus is dieveelhoeke ABCD en EFGH gelykvormig.

Alle vierkante is gelykvormig.

As twee vyfhoeke ABCDE en GHJKL gelykvormig is, bepaal die lengtes van die sye en die groottes van die hoeke wat met letters gemerk is:

  1. Daar word aan ons gegee dat ABCDE en GHJKL gelykvormig is. Dit beteken dat:

    AB GH = BC HJ = CD JK = DE KL = EA LG


    A ^ = G ^ B ^ = H ^ C ^ = J ^ D ^ = K ^ E ^ = L ^
  2. Daar word gevra om te bepaal

    1. a , b , c en d , en
    2. e , f and g .
  3. Die ooreenstemmende hoeke is ewe groot en daar is dus geen berekening nodig nie. Daar word aan ons ʼn paar sye D C en K J gegee wat ooreenstemmend is. D C K J = 4 , 5 3 = 1 , 5 so ons weet dat al die sye van K J H G L 1,5 keer kleiner is as die sylengtes van A B C D E .

  4. a 2 = 1 , 5 a = 2 × 1 , 5 = 3 b 1 , 5 = 1 , 5 b = 1 , 5 × 1 , 5 = 2 , 25 6 c = 1 , 5 c = 6 ÷ 1 , 5 = 4 d = 3 1 , 5 d = 2
  5. e = 92 ( ooreenstemmend tot H ) f = 120 ( ooreenstemmend tot D ) g = 40 ( ooreenstemmend tot E )
  6. a = 3 b = 2 , 25 c = 4 d = 2 e = 92 f = 120 g = 40

Gelykvormigheid van gelyksydige driehoeke

Werk in pare en toon dat alle gelyksydige driehoeke gelykvormig is.

Veelhoeke gemeng

  1. Vind die onbekende waardes in elke geval. Gee redes.
  2. Vind die hoeke en lengtes wat met letters gemerk is in die volgende figure:

Ondersoek: definieer poligone

Ondersoek verskillende maniere om poligone te definieer. Jy behoort spesiale aandag te gee aan die volgende poligone:

  • Gelykbenige driehoeke, gelyksydige driehoeke, reghoekige driehoeke
  • Vlieërs, parallelogramme, reghoeke, rombusse, vierkante, trapesiums

Neem in oorweging hoe die figure in hierdie boek gedefinieer is en watter alternatiewe definisies daar bestaan. Byvoorbeeld, ʼn driehoek is ʼn driesydige poligoon of ʼn driehoek is ʼn figuur met drie sye en drie hoeke. Driehoeke kan geklassifiseer word volgende hulle sye of volgens hulle hoeke. Kan mens ook vierhoeke op hierdie manier klassifiseer? Watter ander name is daar vir hierdie figure? Byvoorbeeld, vierhoeke kan ook genoem word tetragone.

Questions & Answers

how can chip be made from sand
Eke Reply
are nano particles real
Missy Reply
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
has a lot of application modern world
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
Nasa has use it in the 60's, copper as water purification in the moon travel.
nanocopper obvius
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, Siyavula textbooks: wiskunde (graad 10) [caps]. OpenStax CNX. Aug 04, 2011 Download for free at http://cnx.org/content/col11328/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: wiskunde (graad 10) [caps]' conversation and receive update notifications?