<< Chapter < Page Chapter >> Page >

Grafieke van trigonometriese funksies

Hierdie afdeling beskryf die grafieke van trigonometriese funksies.

Grafiek van sin θ

Grafiek van sin θ

Volgooi die volgende tabel en gebruik jou sakrekenaar om die waardes te bereken. Stip dan die waardes met sin θ op die y -as en θ op die x -as. Rond die antwoorde af tot 1 desimale plek.

θ 0 30 60 90 120 150
sin θ
θ 180 210 240 270 300 330 360
sin θ

Laat ons terugkyk na ons waardes vir sin θ .

θ 0 30 45 60 90 180
sin θ 0 1 2 1 2 3 2 1 0

Soos jy kan sien, die funksie sin θ het 'n waarde van 0 by θ = 0 . Sy waarde neem egalig toe tot by θ = 90 wanneer sy waarde 1 is. Ons weet ook dat dit later afneem na 0 as θ = 180 . Deur dit alles bymekaar te sit, kan ons 'n idee kry van die volle omvang van die sinuskurwe. Die sinuskurwe word gewys in [link] . Let op die kurwe se vorm, waar elke kurwe die lengte het van 360 . Ons sê die grafiek het 'n periode van 360 . Die hoogte van die kurwe bo (of onder) die x -as word die kurwe se amplitude genoem. Dus is die amplitude van die sinuskurwe is 1.

Die grafiek van y = sin θ

Funksies in die vorm y = a sin ( x ) + q

In die vergelyking, y = a sin ( x ) + q , a en q is konstantes en het verskillende invloede op die grafiek van die funksie. Die algemene vorm van hierdie grafiek word gewys in [link] vir die funksie f ( θ ) = 2 sin θ + 3 .

Grafiek van f ( θ ) = 2 sin θ + 3

Funksies van die vorm y = a sin ( θ ) + q :

  1. Op dieselfde stel asse, trek die volgende grafieke:
    1. a ( θ ) = sin θ - 2
    2. b ( θ ) = sin θ - 1
    3. c ( θ ) = sin θ
    4. d ( θ ) = sin θ + 1
    5. e ( θ ) = sin θ + 2
    Gebruik jou resultate om die invloed van q af te lei.
  2. Op dieselfde stel asse, trek die volgende grafieke:
    1. f ( θ ) = - 2 · sin θ
    2. g ( θ ) = - 1 · sin θ
    3. h ( θ ) = 0 · sin θ
    4. j ( θ ) = 1 · sin θ
    5. k ( θ ) = 2 · sin θ
    Gebruik jou resultate om die invloed van a af te lei.

Dis duidelik dat q 'n vertikale verskuiwing teweegbring. As q = 2 , sal die hele sinusgrafiek 2 eenhede opskuif. As q = - 1 , suif die hele grafiek 1 eenheid af.

Hierdie eienskappe word opgesom in [link] .

Jy behoort te vind dat die waarde van a die hoogte van die pieke van die grafiek beïnvloed. As die grootte van a toeneem, word die pieke hoër. As dit afneem, word die pieke laer.

Tabel wat die algemene vorms en posisies van grafieke en funksies in die vorm y = a sin ( x ) + q opsom
a > 0 a < 0
q > 0
q < 0

Gebied en terrein

Vir f ( θ ) = a sin ( θ ) + q , is die gebied { θ : θ R } omdat daar geen waarde is van θ R waarvoor f ( θ ) ongedefinieerd is nie.

Die terrein van f ( θ ) = a sin θ + q hang daarvan af of die waarde vir a positief of negatief is. Ons sal die twee gevalle afsonderlik oorweeg.

As a > 0 we have:

- 1 sin θ 1 - a a sin θ a ( Vermenigvuldiging met 'n positiewe getal handhaaf die aard van die ongelykheid ) - a + q a sin θ + q a + q - a + q f ( θ ) a + q

Dit vertel ons dat vir alle waardes van θ , f ( θ ) altyd tussen - a + q en a + q is. Daarom as a > 0 , is die terrein van f ( θ ) = a sin θ + q dus { f ( θ ) : f ( θ ) [ - a + q , a + q ] } .

Insgelyks, daar kan getoon word dat as a < 0 , dan is die terrein van f ( θ ) = a sin θ + q is { f ( θ ) : f ( θ ) [ a + q , - a + q ] } . Dit word as 'n oefening gelaat.

Die maklikste manier om die terrein te bepaal is om bloot vir die "bokant" en die "onderkant" van die grafiek te soek.


Die y -snypunt, y i n t , van f ( θ ) = a sin ( x ) + q is eenvoudig die waarde van f ( θ ) by θ = 0 .

y i n t = f ( 0 ) = a sin ( 0 ) + q = a ( 0 ) + q = q

Grafiek van cos θ

Grafiek van cos θ :

Voltooi die volgende tabel, gebruik jou sakrekenaar om die waardes korrek tot 1 desimale plek te bereken. Stip dan die waardes met cos θ op die y -as en θ op die x -as.

Questions & Answers

anyone know any internet site where one can find nanotechnology papers?
Damian Reply
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Siyavula textbooks: wiskunde (graad 10) [caps]. OpenStax CNX. Aug 04, 2011 Download for free at http://cnx.org/content/col11328/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: wiskunde (graad 10) [caps]' conversation and receive update notifications?