<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Identify and distinguish between the types of connective tissue: proper, supportive, and fluid
  • Explain the functions of connective tissues

As may be obvious from its name, one of the major functions of connective tissue is to connect tissues and organs. Unlike epithelial tissue, which is composed of cells closely packed with little or no extracellular space in between, connective tissue cells are dispersed in a matrix    . The matrix usually includes a large amount of extracellular material produced by the connective tissue cells that are embedded within it. The matrix plays a major role in the functioning of this tissue. The major component of the matrix is a ground substance    often crisscrossed by protein fibers. This ground substance is usually a fluid, but it can also be mineralized and solid, as in bones. Connective tissues come in a vast variety of forms, yet they typically have in common three characteristic components: cells, large amounts of amorphous ground substance, and protein fibers. The amount and structure of each component correlates with the function of the tissue, from the rigid ground substance in bones supporting the body to the inclusion of specialized cells; for example, a phagocytic cell that engulfs pathogens and also rids tissue of cellular debris.

Functions of connective tissues

Connective tissues perform many functions in the body, but most importantly, they support and connect other tissues; from the connective tissue sheath that surrounds muscle cells, to the tendons that attach muscles to bones, and to the skeleton that supports the positions of the body. Protection is another major function of connective tissue, in the form of fibrous capsules and bones that protect delicate organs and, of course, the skeletal system. Specialized cells in connective tissue defend the body from microorganisms that enter the body. Transport of fluid, nutrients, waste, and chemical messengers is ensured by specialized fluid connective tissues, such as blood and lymph. Adipose cells store surplus energy in the form of fat and contribute to the thermal insulation of the body.

Embryonic connective tissue

All connective tissues derive from the mesodermal layer of the embryo (see [link] ). The first connective tissue to develop in the embryo is mesenchyme    , the stem cell line from which all connective tissues are later derived. Clusters of mesenchymal cells are scattered throughout adult tissue and supply the cells needed for replacement and repair after a connective tissue injury. A second type of embryonic connective tissue forms in the umbilical cord, called mucous connective tissue    or Wharton’s jelly. This tissue is no longer present after birth, leaving only scattered mesenchymal cells throughout the body.

Classification of connective tissues

The three broad categories of connective tissue are classified according to the characteristics of their ground substance and the types of fibers found within the matrix ( [link] ). Connective tissue proper includes loose connective tissue    and dense connective tissue    . Both tissues have a variety of cell types and protein fibers suspended in a viscous ground substance. Dense connective tissue is reinforced by bundles of fibers that provide tensile strength, elasticity, and protection. In loose connective tissue, the fibers are loosely organized, leaving large spaces in between. Supportive connective tissue —bone and cartilage—provide structure and strength to the body and protect soft tissues. A few distinct cell types and densely packed fibers in a matrix characterize these tissues. In bone, the matrix is rigid and described as calcified because of the deposited calcium salts. In fluid connective tissue    , in other words, lymph and blood, various specialized cells circulate in a watery fluid containing salts, nutrients, and dissolved proteins.

Questions & Answers

why rbc is biconcave?
Sudhakar Reply
to carry oxygen easily
anwaar
What part of the brain controls the body temp
Ridwan
hypothalamus
JAYESH
what are epithelial tissues
Sachibu Reply
epithelial tissue that cover overall parts of the body and it's free from blood and nerves
Bhanu
Epithelial tissues are composed of cells laid out in sheets with strong cell-to-cell attachments.
Duah
Epithelial tissues perform a variety of functions that include; protection, secretion, filtration, diffusion, absorption, etc.
Duah
what control the flow of the blood ?
Donkor Reply
the pumping action of the heart
Holly
what is bony promises on the human body
Kelly Reply
what is the bony promises on human body
Kelly
what are bony prominences on human body
Kelly
support of the body
Bhanu
what are the characteristics of blood
yeboah Reply
they are red in colour
Tawoi
why blood is red in color?
Sudhakar
Me phone no petandi meku doubt vunte nenu phone chesi cheputhanu
Mohan Reply
What is respiratory disease
Rita Reply
emphysema
Sudhakar
What are the importance of homeostasis in human body?
Pablo Reply
homeostasis
Abena
it help to keep our salt and water balance
Husna
Homeostasis regulates and mentain internal equilibrium (ie temperature and pH) of the body.
Edmund
maintain temp and ph so our enzyme works properly
Husna
The inability of the body regulating and maintaining the temp. and pH results in disease affection.
Edmund
formation of the bone
Ali Reply
.
mohamed
عاوز ايه يعني من الفورمايشن
Doctor
notes on cell theory and discovery
Masika Reply
Cell theory are a set of rules for overall knowledge on cells. The most famous set of rules include: All cells arise from other cells. The cell is the functional unit of life. The structure (organelles) and morphology of the cell indicates it's main functions.
Carmelo
Antonie Van L. was the first to actually observe alive microorganisms (such as protist and bacteria) in a microscope in the 1600s.
Carmelo
electro phisiology meand
aparna Reply
rouleaux formation factors
Hridya Reply
can anyone suggest me how to learn forearm and hand topic of anatomy?
Anjali Reply
can anyone suggest me how to learn forearm and hand anatomy topic?
Anjali
can anyone suggest me how to learn forearm and hand topic of anatomy? pls pls tell
Anjali
check out youtube videos for trickss and while learning the boness part keep the bone wid u and learn ..... hope it helps u
Subuhi
ohk
Anjali
formation of the bone
Ali
what is the space between d dura mater and pia mater
Uwakwe Reply
Subdural space
Juveriya
Actually sub dural space is space between dura and arachnoid mater And sub arachnoid space is space between arachnoid and pia mater
Juveriya
the smallest bone in the body
Bahja Reply
stapes is the smallest bone in human Body
dipayan
Yeah
Ridwan
what is cell membrane
Hajara
cell membrane is like a protective cover of a cell and it's cytoplasm
dipayan
thanks
Hajara
list two adpitive mechanism that control homeostasis condition
Hajara
positive and negative feedback Mechanism
dipayan
@Dipayan, a cell membrane encloses and surrounds the cytoplasm of the cell. It's structure varies between species of life (eukaryotes, archaea, bacteria), but it is mostly composed of phospholipid, arachidonic acid, proteins, glycoproteins, glycolipids, and cholesterol.
Carmelo
and the glycoprotein and polysaccharides of the cell membrane forms the glycocalyx which has several functions especially in a bacteria.
Norom

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask