<< Chapter < Page Chapter >> Page >

In everyday life we often combine propositions to form more complex propositions without paying much attention to them. For example combining "Grass is green", and "The sun is red" we say something like "Grass is green and the sun is red", "If the sun is red, grass is green", "The sun is red and the grass is not green" etc. Here "Grass is green", and "The sun is red" are propositions, and form them using connectives "and", "if... then ..." and "not" a little more complex propositions are formed. These new propositions can in turn be combined with other propositions to construct more complex propositions. They then can be combined to form even more complex propositions. This process of obtaining more and more complex propositions can be described more generally as follows:

Let X and Y represent arbitrary propositions. Then [¬X], [X⋀Y], [X⋁Y], [X→Y], and [X↔Y] are propositions.

Note that X and Y here represent an arbitrary proposition. This is actually a part of more rigorous definition of proposition which we see later.

Example : [ P → [Q ⋁ R] ]is a proposition and it is obtained by first constructing [Q ⋁ R] by applying [X ⋁ Y]to propositions Q and R considering them as X and Y, respectively, then by applying [ X→Y ] to the two propositions P and [Q ⋁ R]considering them as X and Y, respectively.

Note: Rigorously speaking X and Y above are place holders for propositions, and so they are not exactly a proposition. They are called a propositional variable, and propositions formed from them using connectives are called a propositional form. However, we are not going to distinguish them here, and both specific propositions such as "2 is greater than 1" and propositional forms such as (P ⋁Q) are going to be called a proposition.

Converse and contrapositive

For the proposition P→Q, the proposition Q→P is called its converse, and the proposition ¬ Q→ ¬ P is called its contrapositive.

For example for the proposition "If it rains, then I get wet",

Converse: If I get wet, then it rains.

Contrapositive: If I don't get wet, then it does not rain.

The converse of a proposition is not necessarily logically equivalent to it, that is they may or may not take the same truth value at the same time.

On the other hand, the contrapositive of a proposition is always logically equivalent to the proposition. That is, they take the same truth value regardless of the values of their constituent variables. Therefore, "If it rains, then I get wet." and "If I don't get wet, then it does not rain." are logically equivalent. If one is true then the other is also true, and vice versa.

From english to proposition

If_then variations

If-then statements appear in various forms in practice. The following list presents some of the variations. These are all logically equivalent, that is as far as true or false of statement is concerned there is no difference between them. Thus if one is true then all the others are also true, and if one is false all the others are false.

  • If p, then q.
  • p implies q.
  • If p, q.
  • p only if q.
  • p is sufficient for q.
  • q if p.
  • q whenever p.
  • q is necessary for p.
  • It is necessary for p that q.

Questions & Answers

what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Discrete structures. OpenStax CNX. Jan 23, 2008 Download for free at http://cnx.org/content/col10513/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Discrete structures' conversation and receive update notifications?

Ask