# 6.3 Properties of the ctfs

 Page 1 / 1
An introduction to the general properties of the Fourier series

## Introduction

In this module we will discuss the basic properties of the Continuous-Time Fourier Series. We will begin by refreshing your memory of our basic Fourier series equations:

$f(t)=\sum_{n=()}$ c n ω 0 n t
${c}_{n}=\frac{1}{T}\int_{0}^{T} f(t)e^{-(i{\omega }_{0}nt)}\,d t$
Let $ℱ(·)$ denote the transformation from $f(t)$ to the Fourier coefficients $ℱ(f(t))=\forall n, n\in \mathbb{Z}\colon {c}_{n}$ $ℱ(·)$ maps complex valued functions to sequences of complex numbers .

## Linearity

$ℱ(·)$ is a linear transformation .

If $ℱ(f(t))={c}_{n}$ and $ℱ(g(t))={d}_{n}$ . Then $\forall \alpha , \alpha \in \mathbb{C}\colon ℱ(\alpha f(t))=\alpha {c}_{n}$ and $ℱ(f(t)+g(t))={c}_{n}+{d}_{n}$

Easy. Just linearity of integral.

$ℱ(f(t)+g(t))=\forall n, n\in \mathbb{Z}\colon \int_{0}^{T} (f(t)+g(t))e^{-(i{\omega }_{0}nt)}\,d t=\forall n, n\in \mathbb{Z}\colon \frac{1}{T}\int_{0}^{T} f(t)e^{-(i{\omega }_{0}nt)}\,d t+\frac{1}{T}\int_{0}^{T} g(t)e^{-(i{\omega }_{0}nt)}\,d t=\forall n, n\in \mathbb{Z}\colon {c}_{n}+{d}_{n}={c}_{n}+{d}_{n}$

## Shifting

Shifting in time equals a phase shift of Fourier coefficients

$ℱ(f(t-{t}_{0}))=e^{-(i{\omega }_{0}n{t}_{0})}{c}_{n}$ if ${c}_{n}=\left|{c}_{n}\right|e^{i\angle ({c}_{n})}$ , then $\left|e^{-(i{\omega }_{0}n{t}_{0})}{c}_{n}\right|=\left|e^{-(i{\omega }_{0}n{t}_{0})}\right|\left|{c}_{n}\right|=\left|{c}_{n}\right|$ $\angle (e^{-(i{\omega }_{0}{t}_{0}n)})=\angle ({c}_{n})-{\omega }_{0}{t}_{0}n$

$ℱ(f(t-{t}_{0}))=\forall n, n\in \mathbb{Z}\colon \frac{1}{T}\int_{0}^{T} f(t-{t}_{0})e^{-(i{\omega }_{0}nt)}\,d t=\forall n, n\in \mathbb{Z}\colon \frac{1}{T}\int_{-{t}_{0}}^{T-{t}_{0}} f(t-{t}_{0})e^{-(i{\omega }_{0}n(t-{t}_{0}))}e^{-(i{\omega }_{0}n{t}_{0})}\,d t=\forall n, n\in \mathbb{Z}\colon \frac{1}{T}\int_{-{t}_{0}}^{T-{t}_{0}} f(\stackrel{~}{t}())e^{-(i{\omega }_{0}n\stackrel{~}{t})}e^{-(i{\omega }_{0}n{t}_{0})}\,d t=\forall n, n\in \mathbb{Z}\colon e^{-(i{\omega }_{0}n\stackrel{~}{t})}{c}_{n}$

## Parseval's relation

$\int_{0}^{T} \left|f(t)\right|^{2}\,d t=T\sum_{n=()}$ c n 2
Parseval's relation tells us that the energy of a signal is equal to the energy of its Fourier transform.
Parseval tells us that the Fourier series maps $L(\left[0 , T\right])^{2}$ to $l(\mathbb{Z})^{2}$ .

For $f(t)$ to have "finite energy," what do the ${c}_{n}$ do as $n\to$ ?

$\left|{c}_{n}\right|^{2}$ for $f(t)$ to have finite energy.

If $\forall n, \left|n\right|> 0\colon {c}_{n}=\frac{1}{n}$ , is $f\in L(\left[0 , T\right])^{2}$ ?

Yes, because $\left|{c}_{n}\right|^{2}=\frac{1}{n^{2}}$ , which is summable.

Now, if $\forall n, \left|n\right|> 0\colon {c}_{n}=\frac{1}{\sqrt{n}}$ , is $f\in L(\left[0 , T\right])^{2}$ ?

No, because $\left|{c}_{n}\right|^{2}=\frac{1}{n}$ , which is not summable.

The rate of decay of the Fourier series determines if $f(t)$ has finite energy .

## Even signals

• $f\left(t\right)=f\left(-t\right)$
• $\parallel {c}_{n}\parallel =\parallel {c}_{-n}\parallel$
• ${c}_{n}=\frac{1}{T}{\int }_{0}^{T}\phantom{\rule{-0.166667em}{0ex}}f\left(t\right)exp\left(-ı{\omega }_{0}nt\right)\phantom{\rule{0.166667em}{0ex}}dt$
• $=\frac{1}{T}{\int }_{0}^{\frac{T}{2}}\phantom{\rule{-0.166667em}{0ex}}f\left(t\right)exp\left(-ı{\omega }_{0}nt\right)\phantom{\rule{0.166667em}{0ex}}dt+\frac{1}{T}{\int }_{\frac{T}{2}}^{T}\phantom{\rule{-0.166667em}{0ex}}f\left(t\right)exp\left(-ı{\omega }_{0}nt\right)\phantom{\rule{0.166667em}{0ex}}dt$
• $=\frac{1}{T}{\int }_{0}^{\frac{T}{2}}\phantom{\rule{-0.166667em}{0ex}}f\left(-t\right)exp\left(-ı{\omega }_{0}nt\right)\phantom{\rule{0.166667em}{0ex}}dt+\frac{1}{T}{\int }_{\frac{T}{2}}^{T}\phantom{\rule{-0.166667em}{0ex}}f\left(-t\right)exp\left(-ı{\omega }_{0}nt\right)\phantom{\rule{0.166667em}{0ex}}dt$
• $=\frac{1}{T}{\int }_{0}^{T}\phantom{\rule{-0.166667em}{0ex}}f\left(t\right)\left[exp,\left(ı{\omega }_{0}nt\right),\phantom{\rule{0.166667em}{0ex}},d,t,+,exp,\left(-ı{\omega }_{0}nt\right)\right]\phantom{\rule{0.166667em}{0ex}}dt$
• $=\frac{1}{T}{\int }_{0}^{T}\phantom{\rule{-0.166667em}{0ex}}f\left(t\right)2cos\left({\omega }_{0}nt\right)\phantom{\rule{0.166667em}{0ex}}dt$

## Odd signals

• $f\left(t\right)=\mathrm{-f}\left(\mathrm{-t}\right)$
• ${c}_{n}={c}_{-n}$ *
• ${c}_{n}=\frac{1}{T}{\int }_{0}^{T}\phantom{\rule{-0.166667em}{0ex}}f\left(t\right)exp\left(-ı{\omega }_{0}nt\right)\phantom{\rule{0.166667em}{0ex}}dt$
• $=\frac{1}{T}{\int }_{0}^{\frac{T}{2}}\phantom{\rule{-0.166667em}{0ex}}f\left(t\right)exp\left(-ı{\omega }_{0}nt\right)\phantom{\rule{0.166667em}{0ex}}dt+\frac{1}{T}{\int }_{\frac{T}{2}}^{T}\phantom{\rule{-0.166667em}{0ex}}f\left(t\right)exp\left(-ı{\omega }_{0}nt\right)\phantom{\rule{0.166667em}{0ex}}dt$
• $=\frac{1}{T}{\int }_{0}^{\frac{T}{2}}\phantom{\rule{-0.166667em}{0ex}}f\left(t\right)exp\left(-ı{\omega }_{0}nt\right)\phantom{\rule{0.166667em}{0ex}}dt-\frac{1}{T}{\int }_{\frac{T}{2}}^{T}\phantom{\rule{-0.166667em}{0ex}}f\left(-t\right)exp\left(ı{\omega }_{0}nt\right)\phantom{\rule{0.166667em}{0ex}}dt$
• $=-\frac{1}{T}{\int }_{0}^{T}\phantom{\rule{-0.166667em}{0ex}}f\left(t\right)\left[exp,\left(ı{\omega }_{0}nt\right),\phantom{\rule{0.166667em}{0ex}},d,t,-,exp,\left(-ı{\omega }_{0}nt\right)\right]\phantom{\rule{0.166667em}{0ex}}dt$
• $=-\frac{1}{T}{\int }_{0}^{T}\phantom{\rule{-0.166667em}{0ex}}f\left(t\right)2ısin\left({\omega }_{0}nt\right)\phantom{\rule{0.166667em}{0ex}}dt$

## Real signals

• $f\left(t\right)=f$ * $\left(t\right)$
• ${c}_{n}={c}_{-n}$ *
• ${c}_{n}=\frac{1}{T}{\int }_{0}^{T}\phantom{\rule{-0.166667em}{0ex}}f\left(t\right)exp\left(-ı{\omega }_{0}nt\right)\phantom{\rule{0.166667em}{0ex}}dt$
• $=\frac{1}{T}{\int }_{0}^{\frac{T}{2}}\phantom{\rule{-0.166667em}{0ex}}f\left(t\right)exp\left(-ı{\omega }_{0}nt\right)\phantom{\rule{0.166667em}{0ex}}dt+\frac{1}{T}{\int }_{\frac{T}{2}}^{T}\phantom{\rule{-0.166667em}{0ex}}f\left(t\right)exp\left(-ı{\omega }_{0}nt\right)\phantom{\rule{0.166667em}{0ex}}dt$
• $=\frac{1}{T}{\int }_{0}^{\frac{T}{2}}\phantom{\rule{-0.166667em}{0ex}}f\left(-t\right)exp\left(-ı{\omega }_{0}nt\right)\phantom{\rule{0.166667em}{0ex}}dt+\frac{1}{T}{\int }_{\frac{T}{2}}^{T}\phantom{\rule{-0.166667em}{0ex}}f\left(-t\right)exp\left(-ı{\omega }_{0}nt\right)\phantom{\rule{0.166667em}{0ex}}dt$
• $=\frac{1}{T}{\int }_{0}^{T}\phantom{\rule{-0.166667em}{0ex}}f\left(t\right)\left[exp,\left(ı{\omega }_{0}nt\right),\phantom{\rule{0.166667em}{0ex}},d,t,+,exp,\left(-ı{\omega }_{0}nt\right)\right]\phantom{\rule{0.166667em}{0ex}}dt$
• $=\frac{1}{T}{\int }_{0}^{T}\phantom{\rule{-0.166667em}{0ex}}f\left(t\right)2cos\left({\omega }_{0}nt\right)\phantom{\rule{0.166667em}{0ex}}dt$

## Differentiation in fourier domain

$(ℱ(f(t))={c}_{n})\implies (ℱ(\frac{d f(t)}{d t}})=in{\omega }_{0}{c}_{n})$

Since

$f(t)=\sum_{n=()}$ c n ω 0 n t
then
$\frac{d f(t)}{d t}}=\sum_{n=()}$ c n t ω 0 n t n c n ω 0 n ω 0 n t
A differentiator attenuates the low frequencies in $f(t)$ and accentuates the high frequencies. It removes general trends and accentuates areas of sharpvariation.
A common way to mathematically measure the smoothness of a function $f(t)$ is to see how many derivatives are finite energy.
This is done by looking at the Fourier coefficients of thesignal, specifically how fast they decay as $n\to$ .If $ℱ(f(t))={c}_{n}$ and $\left|{c}_{n}\right|$ has the form $\frac{1}{n^{k}}$ , then $ℱ(\frac{d^{m}f(t)}{dt^{m}})=(in{\omega }_{0})^{m}{c}_{n}$ and has the form $\frac{n^{m}}{n^{k}}$ .So for the ${m}^{\mathrm{th}}$ derivative to have finite energy, we need $\sum \left|\frac{n^{m}}{n^{k}}\right|^{2}$ thus $\frac{n^{m}}{n^{k}}$ decays faster than $\frac{1}{n}$ which implies that $2k-2m> 1$ or $k> \frac{2m+1}{2}$ Thus the decay rate of the Fourier series dictates smoothness.

## Integration in the fourier domain

If

$ℱ(f(t))={c}_{n}$
then
$ℱ(\int_{()} \,d \tau )$ t f τ 1 ω 0 n c n
If ${c}_{0}\neq 0$ , this expression doesn't make sense.

Integration accentuates low frequencies and attenuates high frequencies. Integrators bring out the general trends in signals and suppress short term variation (which is noise in many cases). Integrators are much nicer than differentiators.

## Signal multiplication and convolution

Given a signal $f(t)$ with Fourier coefficients ${c}_{n}$ and a signal $g(t)$ with Fourier coefficients ${d}_{n}$ , we can define a new signal, $y(t)$ , where $y(t)=f(t)g(t)$ . We find that the Fourier Series representation of $y(t)$ , ${e}_{n}$ , is such that ${e}_{n}=\sum_{k=()}$ c k d n - k . This is to say that signal multiplication in the time domainis equivalent to signal convolution in the frequency domain, and vice-versa: signal multiplication in the frequency domain is equivalent to signal convolution in the time domain.The proof of this is as follows

${e}_{n}=\frac{1}{T}\int_{0}^{T} f(t)g(t)e^{-(i{\omega }_{0}nt)}\,d t=\frac{1}{T}\int_{0}^{T} \sum_{k=()} \,d t$ c k ω 0 k t g t ω 0 n t k c k 1 T t 0 T g t ω 0 n k t k c k d n - k
for more details, see the section on Signal convolution and the CTFS

## Conclusion

Like other Fourier transforms, the CTFS has many useful properties, including linearity, equal energy in the time and frequency domains, and analogs for shifting, differentation, and integration.

 Property Signal CTFS Linearity $ax\left(t\right)+by\left(t\right)$ $aX\left(f\right)+bY\left(f\right)$ Time Shifting $x\left(t-\tau \right)$ $X\left(f\right){e}^{-j2\pi f\tau /T}$ Time Modulation $x\left(t\right){e}^{j2\pi f\tau /T}$ $X\left(f-k\right)$ Multiplication $x\left(t\right)y\left(t\right)$ $X\left(f\right)*Y\left(f\right)$ Continuous Convolution $x\left(t\right)*y\left(t\right)$ $X\left(f\right)Y\left(f\right)$

How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
Got questions? Join the online conversation and get instant answers!