# 3.1 Terminology  (Page 4/18)

 Page 4 / 18

## References

“Countries List by Continent.” Worldatlas, 2013. Available online at http://www.worldatlas.com/cntycont.htm (accessed May 2, 2013).

## Chapter review

In this module we learned the basic terminology of probability. The set of all possible outcomes of an experiment is called the sample space. Events are subsets of the sample space, and they are assigned a probability that is a number between zero and one, inclusive.

## Formula review

A and B are events

P ( S ) = 1 where S is the sample space

0 ≤ P ( A ) ≤ 1

P ( A | B ) = $\frac{P\text{(}A\text{AND}B\text{)}}{P\text{(}B\text{)}}$

In a particular college class, there are male and female students. Some students have long hair and some students have short hair. Write the symbols for the probabilities of the events for parts a through j. (Note that you cannot find numerical answers here. You were not given enough information to find any probability values yet; concentrate on understanding the symbols.)

• Let F be the event that a student is female.
• Let M be the event that a student is male.
• Let S be the event that a student has short hair.
• Let L be the event that a student has long hair.
1. The probability that a student does not have long hair.
2. The probability that a student is male or has short hair.
3. The probability that a student is a female and has long hair.
4. The probability that a student is male, given that the student has long hair.
5. The probability that a student has long hair, given that the student is male.
6. Of all the female students, the probability that a student has short hair.
7. Of all students with long hair, the probability that a student is female.
8. The probability that a student is female or has long hair.
9. The probability that a randomly selected student is a male student with short hair.
10. The probability that a student is female.
1. P ( L′ ) = P ( S )
2. P ( M OR S )
3. P ( F AND L )
4. P ( M | L )
5. P ( L | M )
6. P ( S | F )
7. P ( F | L )
8. P ( F OR L )
9. P ( M AND S )
10. P ( F )

Use the following information to answer the next four exercises. A box is filled with several party favors. It contains 12 hats, 15 noisemakers, ten finger traps, and five bags of confetti.
Let H = the event of getting a hat.
Let N = the event of getting a noisemaker.
Let F = the event of getting a finger trap.
Let C = the event of getting a bag of confetti.

Find P ( H ).

Find P ( N ).

P ( N ) = $\frac{15}{42}$ = $\frac{5}{14}$ = 0.36

Find P ( F ).

Find P ( C ).

P ( C ) = $\frac{5}{42}$ = 0.12

Use the following information to answer the next six exercises. A jar of 150 jelly beans contains 22 red jelly beans, 38 yellow, 20 green, 28 purple, 26 blue, and the rest are orange.
Let B = the event of getting a blue jelly bean
Let G = the event of getting a green jelly bean.
Let O = the event of getting an orange jelly bean.
Let P = the event of getting a purple jelly bean.
Let R = the event of getting a red jelly bean.
Let Y = the event of getting a yellow jelly bean.

Find P ( B ).

Find P ( G ).

P ( G ) = $\frac{20}{150}$ = $\frac{2}{15}$ = 0.13

Find P ( P ).

Find P ( R ).

P ( R ) = $\frac{22}{150}$ = $\frac{11}{75}$ = 0.15

Find P ( Y ).

Find P ( O ).

P ( O ) = $\frac{150-22-38-20-28-26}{150}$ = $\frac{16}{150}$ = $\frac{8}{75}$ = 0.11

Use the following information to answer the next six exercises. There are 23 countries in North America, 12 countries in South America, 47 countries in Europe, 44 countries in Asia, 54 countries in Africa, and 14 in Oceania (Pacific Ocean region).
Let A = the event that a country is in Asia.
Let E = the event that a country is in Europe.
Let F = the event that a country is in Africa.
Let N = the event that a country is in North America.
Let O = the event that a country is in Oceania.
Let S = the event that a country is in South America.

mean is number that occurs frequently in a giving data
That places the mode and the mean as the same thing. I'd define the mean as the ratio of the total sum of variables to the variable count, and it assigns the variables a similar value across the board.
Samsicker
what is mean
what is normal distribution
What is the uses of sample in real life
pain scales in hospital
Lisa
change of origin and scale
3. If the grades of 40000 students in a course at the Hashemite University are distributed according to N(60,400) Then the number of students with grades less than 75 =*
If a constant value is added to every observation of data, then arithmetic mean is obtained by
sum of AM+Constnt
Fazal
data can be defined as numbers in context. suppose you are given the following set of numbers 18,22,22,20,19,21
what are data
what is mode?
what is statistics
Natasha
statistics is a combination of collect data summraize data analyiz data and interprete data
Ali
what is mode
Natasha
what is statistics
It is the science of analysing numerical data in large quantities, especially for the purpose of inferring proportions in a whole from those in a representative sample.
Bernice
history of statistics
statistics was first used by?
Terseer
if a population has a prevalence of Hypertension 5%, what is the probability of 4 people having hypertension from 8 randomly selected individuals?
Carpet land sales persons average 8000 per weekend sales Steve qantas the firm's vice president proposes a compensation plan with new selling incentives Steve hopes that the results of a trial selling period will enable him to conclude that the compensation plan increases the average sales per sales
Supposed we have Standard deviation 1.56, mean 6.36, sample size 25 and Z-score 1.96 at 95% confidence level, what is the confidence interval?