<< Chapter < Page Chapter >> Page >

The wave equation

The vibration of a string in one dimension can be understood through the standard wave equation, given by

2 u t 2 = c 2 2 u x 2 , u ( 0 , t ) = u ( , t ) = 0

where u describes string displacement, c is a constant describing wave speed and is the length of the string. The string is fixed at displacement 0 at the endpoints and assume without loss of generality c = 1 . This equation is derived in much more detail in . This second order partial differential equation can likewise be rewritten as a system of two ordinary differential equations in time

u t = v v t = c 2 2 u x 2

or equivalently, the first order matrix equation

t u v = 0 I c 2 2 x 2 0 u v

Eigenvalues, eigenfunctions, and their significance

We are especially interested in the eigenvalues λ and associated eigenfunctions of the wave equation, such that

0 I 2 x 2 0 u v = λ u v , 2 u x 2 = λ 2 u

Since only trigonometric functions satisfy both our equation and our boundary conditions, our eigenfunctions take the form u ( x ) = A sin ( λ x ) + B cos ( λ x ) . Applying our boundary condition at x = 0 to u ( x ) reveals that B = 0 . Since we can then set A as an arbitrary scaling factor, our eigenfunction u ( x ) is simply sin λ x . By applying our second boundary condition at x = , we can see that λ is of the form i π n for any nonzero integer n . We then get the eigenpairs

λ n = i π n , u n ( x ) = sin ( λ n x )

These eigenfunctions constitute an infinite-dimensional basis for any solution to the wave equation, with u i ( x ) orthogonal to u j ( x ) for i j with respect to the inner product

u i , u j 0 u i ( x , t ) u j ( x , t ) d x

Intuitively, these correspond to the fundamental modes of a string - any vibration of the string can be decomposed into a linear combination of the fundamentals. The magnitude of each eigenvalue, likewise, is related to the frequency at which the corresponding fundamental mode vibrates - in other words, each eigenvalue is tied to a note in the progression of the Western scale. As we will see, this linear progression of the eigenvalues is lost when a single string is replaced by a network of strings, leading to more of a dissonant sound when a network is plucked.

Finite element solution method

In this report, we use the finite element method to numerically solve for solutions to the wave equation. The idea behind this method is based on picking a finite-dimensional set of N basis functions φ i ( x ) that span the space on which the solution is defined. We then calculate the best approximation

u ( x , t ) = j = 1 N c j ( t ) φ j ( x )

to the solution from the span of these basis functions via the solution to a matrix equation A c = f . Recall the definition of our inner product u i , u j 0 u i ( x , t ) u j ( x , t ) d x . Then, A is

A = φ 1 , φ 1 φ 1 , φ 2 ... φ 1 , φ N φ 2 , φ 1 φ 2 , φ 2 ... φ 2 , φ N φ N , φ 1 φ n , φ 2 ... φ n , φ N , f = f , φ 1 f , φ 2 f , φ N

A is called the Gramian matrix - a matrix whose i j th entry is the inner product between the i and j th basis functions. After solving for the vector c = [ c 1 , c 2 , ... , c N ] T , we can reconstruct our best approximation to the solution.

We first rearrange our PDE into a more flexible form. Given a function v ( x ) obeying the same boundary conditions as u , multiply both sides of our wave equation by this function and integrate over the interval [ 0 , ]

Questions & Answers

Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, The art of the pfug. OpenStax CNX. Jun 05, 2013 Download for free at http://cnx.org/content/col10523/1.34
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'The art of the pfug' conversation and receive update notifications?