# 1.5 Fast convolution using the fft

 Page 1 / 1
This module describes FFT, convolution, filtering, LTI systems, digital filters and circular convolution.

## Important application of the fft

How many complex multiplies and adds are required to convolve two $N$ -pt sequences? $y(n)=\sum_{m=0}^{N-1} x(m)h(n-m)$

There are $2N-1$ non-zero output points and each will be computed using $N$ complex mults and $N-1$ complex adds. Therefore, $\text{Total Cost}=(2N-1)(N+N-1)\approx O(N^{2})$

• Zero-pad these two sequences to length $2N-1$ , take DFTs using the FFT algorithm $x(n)\to X(k)$ $h(n)\to H(k)$ The cost is $O((2N-1)\lg (2N-1))=O(N\lg N)$
• Multiply DFTs $X(k)H(k)$ The cost is $O(2N-1)=O(N)$
• Inverse DFT using FFT $X(k)H(k)\to y(n)$ The cost is $O((2N-1)\lg (2N-1))=O(N\lg N)$

So the total cost for direct convolution of two $N$ -point sequences is $O(N^{2})$ . Total cost for convolution using FFT algorithm is $O(N\lg N)$ . That is a huge savings ( ).

## Summary of dft

• $x(n)$ is an $N$ -point signal ( ).
• $X(k)=\sum_{n=0}^{N-1} x(n)e^{-(i\frac{2\pi }{N}kn)}=\sum_{n=0}^{N-1} x(n){W}_{N}^{(kn)}$ where ${W}_{N}=e^{-(i\frac{2\pi }{N})}$ is a "twiddle factor" and the first part is the basic DFT.

## What is the dft

$X(k)=X(F=\frac{k}{N})=\sum_{n=0}^{N-1} x(n)e^{-(i\times 2\pi Fn)}$ where $X(F=\frac{k}{N})$ is the DTFT of $x(n)$ and $\sum_{n=0}^{N-1} x(n)e^{-(i\times 2\pi Fn)}$ is the DTFT of $x(n)$ at digital frequency $F$ . This is a sample of the DTFT. We can do frequency domain analysis on a computer!

## Inverse dft (idft)

$x(n)=\frac{1}{N}\sum_{n=0}^{N-1} X(k)e^{i\frac{2\pi }{N}kn}$

• Build $x(n)$ using Simple complex sinusoidal building block signals
• Amplitude of each complex sinusoidal building block in $x(n)$ is $\frac{1}{N}X(k)$

## Dft

$↔(x(n)\mathop{\mathrm{xor}}h(n), X(k)H(k))$

## Regular convolution from circular convolution

• Zero pad $x(n)$ and $h(n)$ to $\mathrm{length}=\mathrm{length}(x)+\mathrm{length}(h)-1$
• Zero padding increases frequency resolution in DFT domain ( )

## The fast fourier transform (fft)

• Efficient computational algorithm for calculating the DFT
• "Divide and conquer"
• Break signal into even and odd samples keep taking shorter and shorter DFTs, then build $N$ -pt DFT by cleverly combining shorter DFTs
• $N$ -pt DFT: $O(N^{2})\to O(N\log_{2}N)$

## Fast convolution

• Use FFT's to compute circular convolution of zero-padded signals
• Much faster than regular convolution if signal lengths are long
• $O(N^{2})\to O(N\log_{2}N)$

See .

How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers! By By  By  By   By By