<< Chapter < Page Chapter >> Page >

Inleiding

In hierdie hoofstuk sal jy leer hoe om met algebraïese uitdrukkings te werk. Hersiening van vorige faktorisering en vermenigvuldiging van uitdrukkings sal dus nodig wees voordat die nuwe leerstof uitgebrei word vir Graad 10.

Hersiening van vorige werk

Die volgende behoort bekend te wees, maar ons gee 'n paar voorbeelde ter herinnering.

Dele van uitdrukkings

Wiskundige uitdrukkings is soos sinne en elke deel het 'n spesifieke naam. Jy behoort vertroud te wees met die volgende name wat die dele van wiskundige uitdrukkings beskryf.

a · x k + b · x + c m = 0 d · y p + e · y + f 0
Naam Voorbeelde (geskei deur kommas)
term a · x k , b · x , c m , d · y p , e · y , f
uitdrukking a · x k + b · x + c m , d · y p + e · y + f
koëffisiënte a , b , d , e
eksponent (of indeks) k , p
grondtal x , y , c
konstante a , b , c , d , e , f
veranderlike x , y
vergelyking a · x k + b · x + c m = 0
ongelykheid d · y p + e · y + f 0
binomiaal uitdrukking met twee terme
trinomiaal uitdrukking met drie terme

Produk van twee binomiale

'n Binomiaal is 'n wiskundige uitdrukking met twee terme, soos ( a x + b ) en ( c x + d ) . As hierdie twee binomiale vermenigvuldig word, is die volgende die resultaat:

( a · x + b ) ( c · x + d ) = ( a x ) ( c · x + d ) + b ( c · x + d ) = ( a x ) ( c x ) + ( a x ) d + b ( c x ) + b · d = a x 2 + x ( a d + b c ) + b d

Vind die produk van ( 3 x - 2 ) ( 5 x + 8 ) .

  1. ( 3 x - 2 ) ( 5 x + 8 ) = ( 3 x ) ( 5 x ) + ( 3 x ) ( 8 ) + ( - 2 ) ( 5 x ) + ( - 2 ) ( 8 ) = 15 x 2 + 24 x - 10 x - 16 = 15 x 2 + 14 x - 16
    .

Die produk van twee identiese binomiale, is bekend as die kwadraat (of vierkant) van binomiale en word geskryf as:

( a x + b ) 2 = a 2 x 2 + 2 a b x + b 2

Gestel die twee terme is a x + b en a x - b , dan is hulle produk:

( a x + b ) ( a x - b ) = a 2 x 2 - b 2

Dit staan bekend as die verskil van twee kwadrate (of vierkante) .

Faktorisering

Faktorisering is die omgekeerde proses van die uitbreiding van hakies. Byvoorbeeld, as hakies uitgebrei word, word 2 ( x + 1 ) geskryf as 2 x + 2 . Faktorisering sal dus begin met 2 x + 2 en eindig met 2 ( x + 1 ) . In vorige grade het ons gefaktoriseer deur die uithaal van gemeenskaplike faktore en die verskil tussen twee vierkante.

Gemeenskaplike faktore

Faktorisering deur die uithaal van gemeenskaplike faktore, is gebaseer daarop dat daar faktore is wat in al die terme voorkom. Byvoorbeeld, 2 x - 6 x 2 kan as volg gefaktoriseer word:

2 x - 6 x 2 = 2 x ( 1 - 3 x )

Ondersoek: gemeenskaplike faktore

Vind die grootste gemene faktore van die volgende pare terme:

(a) 6 y ; 18 x (b) 12 m n ; 8 n (c) 3 s t ; 4 s u (d) 18 k l ; 9 k p (e) a b c ; a c
(f) 2 x y ; 4 x y z (g) 3 u v ; 6 u (h) 9 x y ; 15 x z (i) 24 x y z ; 16 y z (j) 3 m ; 45 n

Verskil van twee kwadrate

Ons het gesien dat:

( a x + b ) ( a x - b ) = a 2 x 2 - b 2

In [link] dui die = teken aan dat die twee kante altyd gelyk sal wees. Dit beteken dat 'n uitdrukking in die vorm:

a 2 x 2 - b 2

gefaktoriseer kan word as:

( a x + b ) ( a x - b )

Dus,

a 2 x 2 - b 2 = ( a x + b ) ( a x - b )

Byvoorbeeld, x 2 - 16 kan geskryf word as ( x 2 - 4 2 ) wat die verskil is tussen twee kwadrate. Dus, die faktore van x 2 - 16 is ( x - 4 ) en ( x + 4 ) .

Faktoriseer volledig: b 2 y 5 - 3 a b y 3

  1. b 2 y 5 - 3 a b y 3 = b y 3 ( b y 2 - 3 a )

Faktoriseer volledig: 3 a ( a - 4 ) - 7 ( a - 4 )


  1. ( a - 4 ) is die gemene faktor
    3 a ( a - 4 ) - 7 ( a - 4 ) = ( a - 4 ) ( 3 a - 7 )

Faktoriseer 5 ( a - 2 ) - b ( 2 - a )

  1. 5 ( a - 2 ) - b ( 2 - a ) = 5 ( a - 2 ) - [ - b ( a - 2 ) ] = 5 ( a - 2 ) + b ( a - 2 ) = ( a - 2 ) ( 5 + b )

Hersien

  1. Vind die produkte / Verwyder die hakies:
    (a) 2 y ( y + 4 ) (b) ( y + 5 ) ( y + 2 ) (c) ( y + 2 ) ( 2 y + 1 )
    (d) ( y + 8 ) ( y + 4 ) (e) ( 2 y + 9 ) ( 3 y + 1 ) (f) ( 3 y - 2 ) ( y + 6 )


  2. Faktoriseer:
    1. 2 l + 2 w
    2. 12 x + 32 y
    3. 6 x 2 + 2 x + 10 x 3
    4. 2 x y 2 + x y 2 z + 3 x y
    5. - 2 a b 2 - 4 a 2 b


  3. Faktoriseer volledig:
    (a) 7 a + 4 (b) 20 a - 10 (c) 18 a b - 3 b c
    (d) 12 k j + 18 k q (e) 16 k 2 - 4 k (f) 3 a 2 + 6 a - 18
    (g) - 6 a - 24 (h) - 2 a b - 8 a (i) 24 k j - 16 k 2 j
    (j) - a 2 b - b 2 a (k) 12 k 2 j + 24 k 2 j 2 (l) 72 b 2 q - 18 b 3 q 2
    (m) 4 ( y - 3 ) + k ( 3 - y ) (n) a ( a - 1 ) - 5 ( a - 1 ) (o) b m ( b + 4 ) - 6 m ( b + 4 )
    (p) a 2 ( a + 7 ) + a ( a + 7 ) (q) 3 b ( b - 4 ) - 7 ( 4 - b ) (r) a 2 b 2 c 2 - 1


Meer produkte

Khan akademie video oor die produk van polinoomuitdrukkings

Ons het gesien hoe om twee binomiale te vermenigvuldig in die afdeling "Produk van twee Binomiale" . In hierdie gedeelte, gaan ons leer hoe om 'n binomiaal (uitdrukking met twee terme) met 'n trinomiaal of drieterm (uitdrukking met drie terme) te vermenigvuldig. Gelukkig gebruik ons dieselfde metode as om twee binomiaaluitdrukkings te vermenigvuldiging.

Byvoorbeeld, vermenigvuldig 2 x + 1 met x 2 + 2 x + 1

( 2 x + 1 ) ( x 2 + 2 x + 1 ) = 2 x ( x 2 + 2 x + 1 ) + 1 ( x 2 + 2 x + 1 ) ( pas distributiewe eienskap toe ) = [ 2 x ( x 2 ) + 2 x ( 2 x ) + 2 x ( 1 ) ] + [ 1 ( x 2 ) + 1 ( 2 x ) + 1 ( 1 ) ] = 2 x 3 + 4 x 2 + 2 x + x 2 + 2 x + 1 ( brei die hakies uit ) = 2 x 3 + ( 4 x 2 + x 2 ) + ( 2 x + 2 x ) + 1 ( groepeer soortgelyke terme om te vereenvoudig ) = 2 x 3 + 5 x 2 + 4 x + 1 ( vereenvoudig om 'n finale antwoord te gee )

Vermenigvuldiging van binomiaal met trinomiaal

In die vermenigvuldiging van die binomiaal A + B met die trinomiaal C + D + E , is die heel eerste stap om die distributiewe wet toe te pas:

( A + B ) ( C + D + E ) = A ( C + D + E ) + B ( C + D + E )

As jy dit onthou, sal jy nie 'n fout maak nie!

Vermenigvuldig x - 1 met x 2 - 2 x + 1

  1. Twee uitdrukkings word gegee: 'n binomiaal, x - 1 , en 'n trinomiaal, x 2 - 2 x + 1 . Ons moet hulle met mekaar vermenigvuldig.

  2. Pas die distributiewe wet toe en vereenvoudig daarna.

  3. ( x - 1 ) ( x 2 - 2 x + 1 ) = x ( x 2 - 2 x + 1 ) - 1 ( x 2 - 2 x + 1 ) ( pas die distributiewe wet toe ) = [ x ( x 2 ) + x ( - 2 x ) + x ( 1 ) ] + [ - 1 ( x 2 ) - 1 ( - 2 x ) - 1 ( 1 ) ] = x 3 - 2 x 2 + x - x 2 + 2 x - 1 ( brei die hakies uit ) = x 3 + ( - 2 x 2 - x 2 ) + ( x + 2 x ) - 1 ( groepeer soorgelyke terme saam om te vereenvoudig ) = x 3 - 3 x 2 + 3 x - 1 ( vereenvoudig om die finale antwoord te kry )
  4. Die produk van x - 1 en x 2 - 2 x + 1 is x 3 - 3 x 2 + 3 x - 1 .

Vind die produk van x + y en x 2 - x y + y 2 .

  1. Twee uitdrukkings word gegee: 'n binomiaal, x + y , en 'n trinomiaal, x 2 - x y + y 2 . Ons moet hulle met mekaar vermenigvuldig.

  2. Pas die distributiewe wet toe en vereenvoudig dan verder.

  3. ( x + y ) ( x 2 - x y + y 2 ) = x ( x 2 - x y + y 2 ) + y ( x 2 - x y + y 2 ) ( pas die distributiewe wet toe ) = [ x ( x 2 ) + x ( - x y ) + x ( y 2 ) ] + [ y ( x 2 ) + y ( - x y ) + y ( y 2 ) ] = x 3 - x 2 y + x y 2 + y x 2 - x y 2 + y 3 ( brei die hakies uit ) = x 3 + ( - x 2 y + y x 2 ) + ( x y 2 - x y 2 ) + y 3 ( groepeer soortgelyke terme om te vereenvoudig ) = x 3 + y 3 ( vereenvoudig om die finale antwoord te kry )
  4. Die produk van x + y en x 2 - x y + y 2 is x 3 + y 3 .

Ons het gesien dat:
( x + y ) ( x 2 - x y + y 2 ) = x 3 + y 3

Dit staan bekend as die som van derdemagte .

Ondersoek: verskil van derdemagte

Toon aan dat die verskil van derdemagte ( x 3 - y 3 ) gegee word deur die produk van x - y en x 2 + x y + y 2 .

Produkte

  1. Vind die produk van:
    (a) ( - 2 y 2 - 4 y + 11 ) ( 5 y - 12 ) (b) ( - 11 y + 3 ) ( - 10 y 2 - 7 y - 9 )
    (c) ( 4 y 2 + 12 y + 10 ) ( - 9 y 2 + 8 y + 2 ) (d) ( 7 y 2 - 6 y - 8 ) ( - 2 y + 2 )
    (e) ( 10 y 5 + 3 ) ( - 2 y 2 - 11 y + 2 ) (f) ( - 12 y - 3 ) ( 12 y 2 - 11 y + 3 )
    (g) ( - 10 ) ( 2 y 2 + 8 y + 3 ) (h) ( 2 y 6 + 3 y 5 ) ( - 5 y - 12 )
    (i) ( 6 y 7 - 8 y 2 + 7 ) ( - 4 y - 3 ) ( - 6 y 2 - 7 y - 11 ) (j) ( - 9 y 2 + 11 y + 2 ) ( 8 y 2 + 6 y - 7 )
    (k) ( 8 y 5 + 3 y 4 + 2 y 3 ) ( 5 y + 10 ) ( 12 y 2 + 6 y + 6 ) (l) ( - 7 y + 11 ) ( - 12 y + 3 )
    (m) ( 4 y 3 + 5 y 2 - 12 y ) ( - 12 y - 2 ) ( 7 y 2 - 9 y + 12 ) (n) ( 7 y + 3 ) ( 7 y 2 + 3 y + 10 )
    (o) ( 9 ) ( 8 y 2 - 2 y + 3 ) (p) ( - 12 y + 12 ) ( 4 y 2 - 11 y + 11 )
    (q) ( - 6 y 4 + 11 y 2 + 3 y ) ( 10 y + 4 ) ( 4 y - 4 ) (r) ( - 3 y 6 - 6 y 3 ) ( 11 y - 6 ) ( 10 y - 10 )
    (s) ( - 11 y 5 + 11 y 4 + 11 ) ( 9 y 3 - 7 y 2 - 4 y + 6 ) (t) ( - 3 y + 8 ) ( - 4 y 3 + 8 y 2 - 2 y + 12 )


Questions & Answers

anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Siyavula textbooks: wiskunde (graad 10) [caps]. OpenStax CNX. Aug 04, 2011 Download for free at http://cnx.org/content/col11328/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: wiskunde (graad 10) [caps]' conversation and receive update notifications?

Ask