<< Chapter < Page Chapter >> Page >
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. Factoring is an essential skill for success in algebra and higher level mathematics courses. Therefore, we have taken great care in developing the student's understanding of the factorization process. The technique is consistently illustrated by displaying an empty set of parentheses and describing the thought process used to discover the terms that are to be placed inside the parentheses.The factoring scheme for special products is presented with both verbal and symbolic descriptions, since not all students can interpret symbolic descriptions alone. Two techniques, the standard "trial and error" method, and the "collect and discard" method (a method similar to the "ac" method), are presented for factoring trinomials with leading coefficients different from 1. Objectives of this module: understand more clearly the factorization process, be able to determine the greatest common factor of two or more terms.

Overview

  • Factoring Method
  • Greatest Common Factor

Factoring method

In the last two types of problems (Sections [link] and [link] ), we knew one of the factors and were able to determine the other factor through division. Suppose, now, we’re given the product without any factors. Our problem is to find the factors, if possible. This procedure and the previous two procedures are based on the distributive property.

An equation showing the product of a and the sum of b and c equal to ab plus ac. The product on the left are identified as factors and the expression on the right of the equal sign is identified as the product.

We will use the distributive property in reverse.

a b + a c product = a ( b + c ) factors

We notice that in the product, a is common to both terms. (In fact, a is a common factor of both terms.) Since a is common to both terms, we will factor it out and write

a ( )

Now we need to determine what to place inside the parentheses. This is the procedure of the previous section. Divide each term of the product by the known factor a .

a b a = b and a c a = c

Thus, b and c are the required terms of the other factor. Hence,

a b + a c = a ( b + c )

When factoring a monomial from a polynomial, we seek out factors that are not only common to each term of the polynomial, but factors that have these properties:

  1. The numerical coefficients are the largest common numerical coefficients.
  2. The variables possess the largest exponents common to all the variables.

Greatest common factor

A monomial factor that meets the above two requirements is called the greatest common factor of the polynomial.

Sample set a

Factor 3 x 18.

The greatest common factor is 3.

3 x 18 = 3 x 3 6 Factor out 3. 3 x 18 = 3 ( ) Divide each term of the product by 3. 3 x 3 = x and 18 3 = 6 ( Try to perform this division mentally . ) 3 x 18 = 3 ( x 6 )

Got questions? Get instant answers now!

Factor 9 x 3 + 18 x 2 + 27 x .

Notice that 9 x is the greatest common factor.

9 x 3 + 18 x 2 + 27 x = 9 x x 2 + 9 x 2 x + 9 x 3. Factor out 9 x . 9 x 3 + 18 x 2 + 27 x = 9 x ( ) Mentally divide 9 x into each term of the product . 9 x 3 + 18 x 2 + 27 x = 9 x ( x 2 + 2 x + 3 )

Got questions? Get instant answers now!

Factor 10 x 2 y 3 20 x y 4 35 y 5 .

Notice that 5 y 3 is the greatest common factor. Factor out 5 y 3 .

10 x 2 y 3 20 x y 4 35 y 5 = 5 y 3 ( )

Mentally divide 5 y 3 into each term of the product and place the resulting quotients inside the ( ) .

10 x 2 y 3 20 x y 4 35 y 5 = 5 y 3 ( 2 x 2 4 x y 7 y 2 )

Got questions? Get instant answers now!

Factor 12 x 5 + 8 x 3 4 x 2 .

We see that the greatest common factor is 4 x 2 .

12 x 5 + 8 x 3 4 x 2 = 4 x 2 ( )

Mentally dividing 4 x 2 into each term of the product, we get

12 x 5 + 8 x 3 4 x 2 = 4 x 2 ( 3 x 3 2 x + 1 )

Got questions? Get instant answers now!

Practice set a

Factor 4 x 48.

4 ( x 12 )

Got questions? Get instant answers now!

Factor 6 y 3 + 24 y 2 + 36 y .

6 y ( y 2 + 4 y + 6 )

Got questions? Get instant answers now!

Factor 10 a 5 b 4 14 a 4 b 5 8 b 6 .

2 b 4 ( 5 a 5 7 a 4 b 4 b 2 )

Got questions? Get instant answers now!

Factor 14 m 4 + 28 m 2 7 m .

7 m ( 2 m 3 4 m + 1 )

Got questions? Get instant answers now!

Consider this problem: factor A x + A y . Surely, A x + A y = A ( x + y ) . We know from the very beginning of our study of algebra that letters represent single quantities. We also know that a quantity occurring within a set of parentheses is to be considered as a single quantity. Suppose that the letter A is representing the quantity ( a + b ) . Then we have

A x + A y = A ( x + y )

( a + b ) x + ( a + b ) y = ( a + b ) ( x + y )

When we observe the expression

( a + b ) x + ( a + b ) y

we notice that ( a + b ) is common to both terms. Since it is common, we factor it out.

( a + b ) ( )

As usual, we determine what to place inside the parentheses by dividing each term of the product by ( a + b ) .

( a + b ) x ( a + b ) = x and ( a + b ) y ( a + b ) = y

Thus, we get

( a + b ) x + ( a + b ) y = ( a + b ) ( x + y )

This is a forerunner of the factoring that will be done in Section 5.4.

Sample set b

Factor ( x 7 ) a + ( x 7 ) b .

Notice that ( x 7 ) is the greatest common factor. Factor out ( x 7 ) .

( x 7 ) a + ( x 7 ) b = ( x 7 ) ( ) Then , ( x 7 ) a ( x 7 ) = a and ( x 7 ) b ( x 7 ) = b . ( x 7 ) a + ( x 7 ) b = ( x 7 ) ( a + b )

Got questions? Get instant answers now!

Factor 3 x 2 ( x + 1 ) 5 x ( x + 1 ) .

Notice that x and ( x + 1 ) are common to both terms. Factor them out. We’ll perform this factorization by letting A = x ( x + 1 ) . Then we have

3 x A 5 A = A ( 3 x 5 ) But A = x ( x + 1 ) , so 3 x 2 ( x + 1 ) 5 x ( x + 1 ) = x ( x + 1 ) ( 3 x 5 )

Got questions? Get instant answers now!

Practice set b

Factor ( y + 4 ) a + ( y + 4 ) b .

( y + 4 ) ( a + b )

Got questions? Get instant answers now!

Factor 8 m 3 ( n 4 ) 6 m 2 ( n 4 ) .

2 m 2 ( n 4 ) ( 4 m 3 )

Got questions? Get instant answers now!

Exercises

For the following problems, factor the polynomials.

4 x 6

2 ( 2 x 3 )

Got questions? Get instant answers now!

21 y 28

7 ( 3 y 4 )

Got questions? Get instant answers now!

12 x 2 + 18 x

6 x ( 2 x + 3 )

Got questions? Get instant answers now!

8 y 2 + 18

2 ( 4 y 2 + 9 )

Got questions? Get instant answers now!

3 y 2 6

3 ( y 2 2 )

Got questions? Get instant answers now!

6 y 2 6 y

6 y ( y 1 )

Got questions? Get instant answers now!

5 a 2 x 2 + 10 x

5 x ( a 2 x + 2 )

Got questions? Get instant answers now!

10 x 2 + 5 x 15

5 ( 2 x 2 + x 3 )

Got questions? Get instant answers now!

15 y 3 24 y + 9

3 ( 5 y 3 8 y + 3 )

Got questions? Get instant answers now!

b y 3 + b y 2 + b y + b

b ( y 3 + y 2 + y + 1 )

Got questions? Get instant answers now!

9 x 2 + 6 x y + 4 x

x ( 9 x + 6 y + 4 )

Got questions? Get instant answers now!

30 a 2 b 2 + 40 a 2 b 2 + 50 a 2 b 2

Got questions? Get instant answers now!

13 x 2 y 5 c 26 x 2 y 5 c 39 x 2 y 5

13 x 2 y 5 ( c 3 )

Got questions? Get instant answers now!

4 x 2 12 x 8

Got questions? Get instant answers now!

6 y 3 8 y 2 14 y + 10

2 ( 3 y 3 + 4 y 2 + 7 y 5 )

Got questions? Get instant answers now!

A x A y

A ( x y )

Got questions? Get instant answers now!

( x + 4 ) b + ( x + 4 ) c

Got questions? Get instant answers now!

( x 9 ) a + ( x 9 ) b

( x 9 ) ( a + b )

Got questions? Get instant answers now!

( 2 x + 7 ) a + ( 2 x + 7 ) b

Got questions? Get instant answers now!

( 9 a b ) w ( 9 a b ) x

( 9 a b ) ( w x )

Got questions? Get instant answers now!

( 5 v ) X + ( 5 v ) Y

Got questions? Get instant answers now!

3 x 5 y 4 12 x 3 y 4 + 27 x 5 y 3 6 x 2 y 6

3 x 2 y 3 ( x 3 y 4 x y + 9 x 3 2 y 3 )

Got questions? Get instant answers now!

8 a 3 b 15 + 24 a 2 b 14 + 48 a 3 b 6 20 a 3 b 7 + 80 a 4 b 6 4 a 3 b 7 + 4 a 2 b

Got questions? Get instant answers now!

8 x 3 y 2 3 x 3 y 2 + 16 x 4 y 3 + 2 x 2 y

x 2 y ( 11 x y 16 x 2 y 2 2 )

Got questions? Get instant answers now!

Exercises for review

( [link] ) A quantity plus 21 % more of that quantity is 26.25. What is the original quantity?

Got questions? Get instant answers now!

( [link] ) Solve the equation 6 ( t 1 ) = 4 ( 5 s ) if s = 2.

t = 3

Got questions? Get instant answers now!

( [link] ) Given that 4 a 3 is a factor of 8 a 3 12 a 2 , find the other factor.

Got questions? Get instant answers now!

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elementary algebra. OpenStax CNX. May 08, 2009 Download for free at http://cnx.org/content/col10614/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask