# 2.5 Properties of multiplication

 Page 1 / 1
This module is from Fundamentals of Mathematics by Denny Burzynski and Wade Ellis, Jr. This module discusses properties of multiplication of whole numbers. By the end of the module students should be able to understand and appreciate the commutative and associative properties of multiplication and understand why 1 is the multiplicative identity.

## Section overview

• The Commutative Property of Multiplication
• The Associative Property of Multiplication
• The Multiplicative Identity

We will now examine three simple but very important properties of multiplication.

## Commutative property of multiplication

The product of two whole numbers is the same regardless of the order of the factors.

## Sample set a

Multiply the two whole numbers. $6\cdot 7=\text{42}$

$7\cdot 6=\text{42}$

The numbers 6 and 7 can be multiplied in any order. Regardless of the order they are multiplied, the product is 42.

## Practice set a

Use the commutative property of multiplication to find the products in two ways. $\mathrm{15}\cdot 6=\mathrm{90}$ and $6\cdot \mathrm{15}=\mathrm{90}$ $\mathrm{432}\cdot \mathrm{428}=\mathrm{184,896}$ and $\mathrm{428}\cdot \mathrm{432}=\mathrm{184,896}$

## Associative property of multiplication

If three whole numbers are multiplied, the product will be the same if the first two are multiplied first and then that product is multiplied by the third, or if the second two are multiplied first and that product is multiplied by the first. Note that the order of the factors is maintained.

It is a common mathematical practice to use parentheses to show which pair of numbers is to be combined first.

## Sample set b

Multiply the whole numbers. $\left(8\cdot 3\right)\cdot \text{14}=\text{24}\cdot \text{14}=\text{336}$

$8\cdot \left(3\cdot \text{14}\right)=8\cdot \text{42}=\text{336}$

## Practice set b

Use the associative property of multiplication to find the products in two ways. 168 165,564

## The multiplicative identity is 1

The whole number 1 is called the multiplicative identity , since any whole num­ber multiplied by 1 is not changed.

## Sample set c

Multiply the whole numbers. $\text{12}\cdot 1=\text{12}$

$1\cdot \text{12}=\text{12}$

## Practice set c

Multiply the whole numbers. 843

## Exercises

For the following problems, multiply the numbers. 234  4,032  326,000  252  21,340  8,316 For the following 4 problems, show that the quantities yield the same products by performing the multiplications.

$\left(4\cdot 8\right)\cdot 2$ and $4\cdot \left(8\cdot 2\right)$

$\text{32}\cdot 2=\text{64}=4\cdot \text{16}$

$\left(\text{100}\cdot \text{62}\right)\cdot 4$ and $\text{100}\cdot \left(\text{62}\cdot 4\right)$

$\text{23}\cdot \left(\text{11}\cdot \text{106}\right)$ and $\left(\text{23}\cdot \text{11}\right)\cdot \text{106}$

$\text{23}\cdot 1,\text{166}=\text{26},\text{818}=\text{253}\cdot \text{106}$

$1\cdot \left(5\cdot 2\right)$ and $\left(1\cdot 5\right)\cdot 2$

The fact that $\left(\text{a first number}\cdot \text{a second number}\right)\cdot \text{a third number}=\text{a first number}\cdot \left(\text{a second number}\cdot \text{a third number}\right)$ is an example of the property of mul­tiplication.

associative

The fact that $\text{1}\cdot \text{any number}=\text{that particular number}$ is an example of the property of mul­tiplication.

Use the numbers 7 and 9 to illustrate the com­mutative property of multiplication.

$\text{7}\cdot \text{9}=\text{63}=\text{9}\cdot \text{7}$

Use the numbers 6, 4, and 7 to illustrate the asso­ciative property of multiplication.

## Exercises for review

( [link] ) In the number 84,526,098,441, how many millions are there?

6

( [link] ) Replace the letter m with the whole number that makes the addition true.

( [link] ) Use the numbers 4 and 15 to illustrate the commutative property of addition.

$\text{4}+\text{15}=\text{19}$

$\text{15}+\text{4}=\text{19}$

( [link] ) Find the product. $8,\text{000},\text{000}×1,\text{000}$ .

( [link] ) Specify which of the digits 2, 3, 4, 5, 6, 8,10 are divisors of the number 2,244.

2, 3, 4, 6

#### Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
7hours 36 min - 4hours 50 min   By  By By    By