<< Chapter < Page Chapter >> Page >
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. Operations with algebraic expressions and numerical evaluations are introduced in this chapter. Coefficients are described rather than merely defined. Special binomial products have both literal and symbolic explanations and since they occur so frequently in mathematics, we have been careful to help the student remember them. In each example problem, the student is "talked" through the symbolic form.Objectives of this module: be able to expand (a + b)^2, (a - b)^2, and (a + b)(a - b).

Overview

  • Expanding ( a + b ) 2 and ( a b ) 2
  • Expanding ( a + b ) ( a b )

Three binomial products occur so frequently in algebra that we designate them as special binomial products . We have seen them before (Sections [link] and [link] ), but we will study them again because of their importance as time saving devices and in solving equations (which we will study in a later chapter).

These special products can be shown as the squares of a binomial

( a + b ) 2      and      ( a b ) 2

and as the sum and difference of two terms .

( a + b ) ( a b )

There are two simple rules that allow us to easily expand (multiply out) these binomials. They are well worth memorizing, as they will save a lot of time in the future.

Expanding ( a + b ) 2 And ( a b ) 2

Squaring a binomial

To square a binomial: *

  1. Square the first term.
  2. Take the product of the two terms and double it.
  3. Square the last term.
  4. Add the three results together.

( a + b ) 2 = a 2 + 2 a b + b 2 ( a b ) 2 = a 2 2 a b + b 2

Expanding ( a + b ) ( a b )

Sum and difference of two terms

To expand the sum and difference of two terms:

  1. Square the first term and square the second term.
  2. Subtract the square of the second term from the square of the first term.

( a + b ) ( a b ) = a 2 b 2


* See problems 56 and 57 at the end of this section.
See problem 58.

Sample set a

( x + 4 ) 2 Square the first term:    x 2 . The product of both terms is 4 x . Double it:    8 x . Square the last term:   16 . Add them together:    x 2 + 8 x + 16. ( x + 4 ) 2 = x 2 + 8 x + 16

Note that ( x + 4 ) 2 x 2 + 4 2 . The 8 x term is missing!

Got questions? Get instant answers now!

( a 8 ) 2 Square the first term:    a 2 . The product of both terms is 8 a . Double it:    16 a . Square the last term:    64. Add them together:    a 2 + ( 16 a ) + 64. ( a 8 ) 2 = a 2 16 a + 64

Notice that the sign of the last term in this expression is “ + .” This will always happen since the last term results from a number being squared . Any nonzero number times itself is always positive.

( + ) ( + ) = +    and    ( ) ( ) = +

The sign of the second term in the trinomial will always be the sign that occurs inside the parentheses.

Got questions? Get instant answers now!

( y 1 ) 2 Square the first term:    y 2 . The product of both terms is y . Double it:    2 y . Square the last term:    + 1. Add them together:    y 2 + ( 2 y ) + 1.

The square of the binomial 'y minus one' is equal to y squared minus two y plus one. The sign inside the parentheses and the sign of the middle term of the trinomial are the same, and are labeled as 'minus.' The sign of the last term of the trinomial is labeled as 'plus.'

Got questions? Get instant answers now!

( 5 x + 3 ) 2 Square the first term:    25 x 2 . The product of both terms is 15 x . Double it:    30 x . Square the last term:   9 . Add them together:    25 x 2 + 30 x + 9.

The square of the binomial 'five x plus three' is equal to twenty five x squared plus thirty x plus nine. The sign inside the parentheses and the sign of the middle term of the trinomial are the same, and are labeled as 'plus.' The sign of the last term of the trinomial is also labeled as 'plus.'

Got questions? Get instant answers now!

( 7 b 2 ) 2 Square the first term:    49 b 2 . The product of both terms is 14 b . Double it:    28 b . Square the last term:   4 . Add them together:    49 b 2 + ( 28 b ) + 4.

The square of the binomial 'seven b minus two' is equal to forty-nine b squared minus twenty-eight b plus four. The sign inside the parentheses and the sign of the middle term of the trinomial are the same, and are labeled as 'minus.' The sign of the last term of the trinomial is labeled as 'plus.'

Got questions? Get instant answers now!

( x + 6 ) ( x 6 ) Square the first term: x 2 . Subtract the square of the second term ( 36 ) from the square of the first term: x 2 36. ( x + 6 ) ( x 6 ) = x 2 36

Got questions? Get instant answers now!

( 4 a 12 ) ( 4 a + 12 ) Square the first term: 16 a 2 . Subtract the square of the second term ( 144 ) from the square of the first term: 16 a 2 144. ( 4 a 12 ) ( 4 a + 12 ) = 16 a 2 144

Got questions? Get instant answers now!

( 6 x + 8 y ) ( 6 x 8 y ) Square the first term: 36 x 2 . Subtract the square of the second term ( 64 y 2 ) from the square of the first term: 36 x 2 64 y 2 . ( 6 x + 8 y ) ( 6 x 8 y ) = 36 x 2 64 y 2

Got questions? Get instant answers now!

Practice set a

Find the following products.

( x + 5 ) 2

x 2 + 10 x + 25

Got questions? Get instant answers now!

( x + 7 ) 2

x 2 + 14 x + 49

Got questions? Get instant answers now!

( y 6 ) 2

y 2 12 y + 36

Got questions? Get instant answers now!

( 3 a + b ) 2

9 a 2 + 6 a b + b 2

Got questions? Get instant answers now!

( 9 m n ) 2

81 m 2 18 m n + n 2

Got questions? Get instant answers now!

( 10 x 2 y ) 2

100 x 2 40 x y + 4 y 2

Got questions? Get instant answers now!

( 12 a 7 b ) 2

144 a 2 168 a b + 49 b 2

Got questions? Get instant answers now!

( 5 h 15 k ) 2

25 h 2 150 h k + 225 k 2

Got questions? Get instant answers now!

Exercises

For the following problems, find the products.

( x + 3 ) 2

x 2 + 6 x + 9

Got questions? Get instant answers now!

( x + 8 ) 2

x 2 + 16 x + 64

Got questions? Get instant answers now!

( y + 9 ) 2

y 2 + 18 y + 81

Got questions? Get instant answers now!

( a 4 ) 2

a 2 8 a + 16

Got questions? Get instant answers now!

( a 7 ) 2

a 2 14 a + 49

Got questions? Get instant answers now!

( b + 15 ) 2

b 2 + 30 b + 225

Got questions? Get instant answers now!

( x 12 ) 2

x 2 24 x + 144

Got questions? Get instant answers now!

( y 20 ) 2

y 2 40 y + 400

Got questions? Get instant answers now!

( 4 x + 2 ) 2

16 x 2 + 16 x + 4

Got questions? Get instant answers now!

( 7 x 2 ) 2

49 x 2 28 x + 4

Got questions? Get instant answers now!

( 3 a 9 ) 2

9 a 2 54 a + 81

Got questions? Get instant answers now!

( 5 a 3 b ) 2

25 a 2 30 a b + 9 b 2

Got questions? Get instant answers now!

( 2 h 8 k ) 2

4 h 2 32 h k + 64 k 2

Got questions? Get instant answers now!

( a + 1 3 ) 2

a 2 + 2 3 a + 1 9

Got questions? Get instant answers now!

( x + 2 5 ) 2

x 2 + 4 5 x + 4 25

Got questions? Get instant answers now!

( y 5 6 ) 2

y 2 5 3 y + 25 36

Got questions? Get instant answers now!

( x + 1.3 ) 2

x 2 + 2.6 x + 1.69

Got questions? Get instant answers now!

( a + 0.5 ) 2

a 2 + a + 0.25

Got questions? Get instant answers now!

( x 3.1 ) 2

x 2 6.2 x + 9.61

Got questions? Get instant answers now!

( b 0.04 ) 2

b 2 0.08 b + 0.0016

Got questions? Get instant answers now!

( x + 5 ) ( x 5 )

x 2 25

Got questions? Get instant answers now!

( x + 1 ) ( x 1 )

x 2 1

Got questions? Get instant answers now!

( f + 9 ) ( f 9 )

f 2 81

Got questions? Get instant answers now!

( 2 y + 3 ) ( 2 y 3 )

4 y 2 9

Got questions? Get instant answers now!

( 5 x + 6 ) ( 5 x 6 )

Got questions? Get instant answers now!

( 2 a 7 b ) ( 2 a + 7 b )

4 a 2 49 b 2

Got questions? Get instant answers now!

( 7 x + 3 t ) ( 7 x 3 t )

Got questions? Get instant answers now!

( 5 h 2 k ) ( 5 h + 2 k )

25 h 2 4 k 2

Got questions? Get instant answers now!

( x + 1 3 ) ( x 1 3 )

Got questions? Get instant answers now!

( a + 2 9 ) ( a 2 9 )

a 2 4 81

Got questions? Get instant answers now!

( x + 7 3 ) ( x 7 3 )

Got questions? Get instant answers now!

( 2 b + 6 7 ) ( 2 b 6 7 )

4 b 2 36 49

Got questions? Get instant answers now!

Expand ( a + b ) 2 to prove it is equal to a 2 + 2 a b + b 2 .

Got questions? Get instant answers now!

Expand ( a b ) 2 to prove it is equal to a 2 2 a b + b 2 .

( a b ) ( a b ) = a 2 a b a b + b 2 = a 2 2 a b + b 2

Got questions? Get instant answers now!

Expand ( a + b ) ( a b ) to prove it is equal to a 2 b 2 .

Got questions? Get instant answers now!

Fill in the missing label in the equation below.

The square of the binomial 'a plus b' is equal to a squared plus two ab plus b squared. Fill in the missing labels for the equation. See the longdesc for a full description.

first term squared

Got questions? Get instant answers now!

Label the parts of the equation below.

The square of the binomial 'a minus b' is equal to a squared minus two ab plus b squared. Fill in the missing labels for the equation. See the longdesc for a full description.

Got questions? Get instant answers now!

Label the parts of the equation below.

The product of the binomial 'a plus b' and the binomial 'a minus b' is equal to a squared minus b squared. Fill in the missing labels for the equation. See the longdesc for a full description.

(a) Square the first term.
(b) Square the second term and subtract it from the first term.

Got questions? Get instant answers now!

Exercises for review

( [link] ) Simplify ( x 3 y 0 z 4 ) 5 .

Got questions? Get instant answers now!

( [link] ) Find the value of 10 1 2 3 .

1 80

Got questions? Get instant answers now!

( [link] ) Find the product. ( x + 6 ) ( x 7 ) .

Got questions? Get instant answers now!

( [link] ) Find the product. ( 5 m 3 ) ( 2 m + 3 ) .

10 m 2 + 9 m 9

Got questions? Get instant answers now!

( [link] ) Find the product. ( a + 4 ) ( a 2 2 a + 3 ) .

Got questions? Get instant answers now!

Questions & Answers

what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Please keep in mind that it's not allowed to promote any social groups (whatsapp, facebook, etc...), exchange phone numbers, email addresses or ask for personal information on QuizOver's platform.
QuizOver Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Elementary algebra. OpenStax CNX. May 08, 2009 Download for free at http://cnx.org/content/col10614/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask