3.2 Grouping symbols and the order of operations  (Page 2/2)

 Page 2 / 2

$\begin{array}{cc}7\cdot 6-{4}^{2}+{1}^{5}\hfill & \text{Evaluate the exponential forms, moving left to right.}\hfill \\ 7\cdot 6-\text{16}+1\hfill & \text{Multiply 7 and 6:}\phantom{\rule{8px}{0ex}}7\cdot 6=\text{42}\hfill \\ \text{42}-\text{16}+1\hfill & \text{Subtract 16 from 42:}\phantom{\rule{8px}{0ex}}\text{42}-\text{16}=\text{26}\hfill \\ \text{26}+1\hfill & \text{Add 26 and 1:}\phantom{\rule{8px}{0ex}}\text{26}+1=\text{27}\hfill \\ \mathrm{27}\hfill & \end{array}$

$\begin{array}{cc}\frac{{6}^{2}+{2}^{2}}{{4}^{2}+6\cdot {2}^{2}}+\frac{{1}^{3}+{8}^{2}}{{\text{10}}^{2}-\text{19}\cdot 5}\hfill & \begin{array}{c}\text{Recall that the bar is a grouping symbol.}\hfill \\ \text{The fraction}\frac{{6}^{2}+{2}^{2}}{{4}^{2}+6\cdot {2}^{2}}\text{is equivalent to}\left({6}^{2}+{2}^{2}\right)÷\left({4}^{2}+6\cdot {2}^{2}\right)\hfill \end{array}\hfill \\ \frac{\text{36}+4}{\text{16}+6\cdot 4}+\frac{1+\text{64}}{\text{100}-\text{19}\cdot 5}\hfill & \hfill \\ \frac{\text{36}+4}{\text{16}+\text{24}}+\frac{1+\text{64}}{\text{100}-\text{95}}\hfill & \hfill \\ \frac{\text{40}}{\text{40}}+\frac{\text{65}}{5}\hfill & \hfill \\ 1+\text{13}\hfill & \hfill \\ \text{14}\hfill & \end{array}$

Practice set c

Determine the value of each of the following.

$8+\left(\text{32}-7\right)$

33

$\left(\text{34}+\text{18}-2\cdot 3\right)+\text{11}$

57

$8\left(\text{10}\right)+4\left(2+3\right)-\left(\text{20}+3\cdot \text{15}+\text{40}-5\right)$

0

$5\cdot 8+{4}^{2}-{2}^{2}$

52

$4\left({6}^{2}-{3}^{3}\right)÷\left({4}^{2}-4\right)$

3

$\left(8+9\cdot 3\right)÷7+5\cdot \left(8÷4+7+3\cdot 5\right)$

125

$\frac{{3}^{3}+{2}^{3}}{{6}^{2}-\text{29}}+5\left(\frac{{8}^{2}+{2}^{4}}{{7}^{2}-{3}^{2}}\right)÷\frac{8\cdot 3+{1}^{8}}{{2}^{3}-3}$

7

Calculators

Using a calculator is helpful for simplifying computations that involve large num­bers.

Sample set d

Use a calculator to determine each value.

$9,\text{842}+\text{56}\cdot \text{85}$

 Key Display Reads Perform the multiplication first. Type 56 56 Press × 56 Type 85 85 Now perform the addition. Press + 4760 Type 9842 9842 Press = 14602

The display now reads 14,602.

$\text{42}\left(\text{27}+\text{18}\right)+\text{105}\left(\text{810}÷\text{18}\right)$

 Key Display Reads Operate inside the parentheses Type 27 27 Press + 27 Type 18 18 Press = 45 Multiply by 42. Press × 45 Type 42 42 Press = 1890

Place this result into memory by pressing the memory key.

 Key Display Reads Now operate in the other parentheses. Type 810 810 Press ÷ 810 Type 18 18 Press = 45 Now multiply by 105. Press × 45 Type 105 105 Press = 4725 We are now ready to add these two quantities together. Press + 4725 Press the memory recall key. 1890 Press = 6615

Thus, $\text{42}\left(\text{27}+\text{18}\right)+\text{105}\left(\text{810}÷\text{18}\right)=6,\text{615}$

${\text{16}}^{4}+{\text{37}}^{3}$

 Nonscientific Calculators Key Display Reads Type 16 16 Press × 16 Type 16 16 Press × 256 Type 16 16 Press × 4096 Type 16 16 Press = 65536 Press the memory key Type 37 37 Press × 37 Type 37 37 Press × 1396 Type 37 37 Press × 50653 Press + 50653 Press memory recall key 65536 Press = 116189
 Calculators with ${y}^{x}$ Key Key Display Reads Type 16 16 Press ${y}^{x}$ 16 Type 4 4 Press = 4096 Press + 4096 Type 37 37 Press ${y}^{x}$ 37 Type 3 3 Press = 116189

Thus, ${\text{16}}^{4}+{\text{37}}^{3}=\text{116},\text{189}$

We can certainly see that the more powerful calculator simplifies computations.

Nonscientific calculators are unable to handle calculations involving very large numbers.

$\text{85612}\cdot \text{21065}$

 Key Display Reads Type 85612 85612 Press × 85612 Type 21065 21065 Press =

This number is too big for the display of some calculators and we'll probably get some kind of error message. On some scientific calculators such large numbers are coped with by placing them in a form called "scientific notation." Others can do the multiplication directly. (1803416780)

Practice set d

Use a calculator to find each value.

$9,\text{285}+\text{86}\left(\text{49}\right)$

13,499

$\text{55}\left(\text{84}-\text{26}\right)+\text{120}\left(\text{512}-\text{488}\right)$

6,070

${\text{106}}^{3}-{\text{17}}^{4}$

1,107,495

$6,{\text{053}}^{3}$

This number is too big for a nonscientific calculator. A scientific calculator will probably give you $2\text{.}\text{217747109}×{\text{10}}^{\text{11}}$

Exercises

For the following problems, find each value. Check each result with a calculator.

$2+3\cdot \left(8\right)$

26

$\text{18}+7\cdot \left(4-1\right)$

$3+8\cdot \left(6-2\right)+\text{11}$

46

$1-5\cdot \left(8-8\right)$

$\text{37}-1\cdot {6}^{2}$

1

$\text{98}÷2÷{7}^{2}$

$\left({4}^{2}-2\cdot 4\right)-{2}^{3}$

0

$\sqrt{9}+\text{14}$

$\sqrt{\text{100}}+\sqrt{\text{81}}-{4}^{2}$

3

$\sqrt{8}+8-2\cdot 5$

$\sqrt{\text{16}}-1+{5}^{2}$

26

$\text{61}-\text{22}+4\left[3\cdot \left(\text{10}\right)+\text{11}\right]$

$\text{121}-4\cdot \left[\left(4\right)\cdot \left(5\right)-\text{12}\right]+\frac{\text{16}}{2}$

97

$\frac{\left(1+\text{16}\right)-3}{7}+5\cdot \left(\text{12}\right)$

$\frac{8\cdot \left(6+\text{20}\right)}{8}+\frac{3\cdot \left(6+\text{16}\right)}{\text{22}}$

29

$\text{10}\cdot \left[8+2\cdot \left(6+7\right)\right]$

$\text{21}÷7÷3$

1

${\text{10}}^{2}\cdot 3÷{5}^{2}\cdot 3-2\cdot 3$

$\text{85}÷5\cdot 5-\text{85}$

0

$\frac{\text{51}}{\text{17}}+7-2\cdot 5\cdot \left(\frac{\text{12}}{3}\right)$

${2}^{2}\cdot 3+{2}^{3}\cdot \left(6-2\right)-\left(3+\text{17}\right)+\text{11}\left(6\right)$

90

$\text{26}-2\cdot \left\{\frac{6+\text{20}}{\text{13}}\right\}$

$2\cdot \left\{\left(7+7\right)+6\cdot \left[4\cdot \left(8+2\right)\right]\right\}$

508

$0+\text{10}\left(0\right)+\text{15}\cdot \left\{4\cdot 3+1\right\}$

$\text{18}+\frac{7+2}{9}$

19

$\left(4+7\right)\cdot \left(8-3\right)$

$\left(6+8\right)\cdot \left(5+2-4\right)$

144

$\left(\text{21}-3\right)\cdot \left(6-1\right)\cdot \left(7\right)+4\left(6+3\right)$

$\left(\text{10}+5\right)\cdot \left(\text{10}+5\right)-4\cdot \left(\text{60}-4\right)$

1

$6\cdot \left\{2\cdot 8+3\right\}-\left(5\right)\cdot \left(2\right)+\frac{8}{4}+\left(1+8\right)\cdot \left(1+\text{11}\right)$

${2}^{5}+3\cdot \left(8+1\right)$

52

${3}^{4}+{2}^{4}\cdot \left(1+5\right)$

${1}^{6}+{0}^{8}+{5}^{2}\cdot \left(2+8{\right)}^{3}$

25,001

$\left(7\right)\cdot \left(\text{16}\right)-{3}^{4}+{2}^{2}\cdot \left({1}^{7}+{3}^{2}\right)$

$\frac{{2}^{3}-7}{{5}^{2}}$

$\frac{1}{\text{25}}$

$\frac{{\left(1+6\right)}^{2}+2}{3\cdot 6+1}$

$\frac{{6}^{2}-1}{{2}^{3}-3}+\frac{{4}^{3}+2\cdot 3}{2\cdot 5}$

14

$\frac{5\left({8}^{2}-9\cdot 6\right)}{{2}^{5}-7}+\frac{{7}^{2}-{4}^{2}}{{2}^{4}-5}$

$\frac{\left(2+1{\right)}^{3}+{2}^{3}+{1}^{\text{10}}}{{6}^{2}}-\frac{{\text{15}}^{2}-{\left[2\cdot 5\right]}^{2}}{5\cdot {5}^{2}}$

0

$\frac{{6}^{3}-2\cdot {\text{10}}^{2}}{{2}^{2}}+\frac{\text{18}\left({2}^{3}+{7}^{2}\right)}{2\left(\text{19}\right)-{3}^{3}}$

$2\cdot \left\{6+\left[{\text{10}}^{2}-6\sqrt{\text{25}}\right]\right\}$

152

$\text{181}-3\cdot \left(2\sqrt{\text{36}}+3\sqrt{\text{64}}\right)$

$\frac{2\cdot \left(\sqrt{\text{81}}-\sqrt{\text{125}}\right)}{{4}^{2}-\text{10}+{2}^{2}}$

$\frac{4}{5}$

Exercises for review

( [link] ) The fact that 0 + any whole number = that particular whole number is an example of which property of addition?

( [link] ) Find the product. $4,\text{271}×\text{630}$ .

2,690,730

( [link] ) In the statement $\text{27}÷3=9$ , what name is given to the result 9?

( [link] ) What number is the multiplicative identity?

1

( [link] ) Find the value of ${2}^{4}$ .

what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
7hours 36 min - 4hours 50 min         By 