# 5.3 Further techniques in equation solving  (Page 2/2)

 Page 2 / 2

Solve $3\left(m-6\right)-2m=-4+1$ for $m.$

$\begin{array}{lll}\hfill 3\left(m-6\right)-2m& =\hfill & -4+1\hfill \\ \hfill 3m-18-2m& =\hfill & -3\hfill \\ \hfill m-18& =\hfill & -3\hfill \\ \hfill m& =\hfill & 15\hfill \end{array}$

$\begin{array}{lllll}Check:\hfill & \hfill 3\left(15-6\right)-2\left(15\right)& =\hfill & -4+1\hfill & \text{Is}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{correct?}\hfill \\ \hfill & \hfill 3\left(9\right)-30& =\hfill & -3\hfill & \text{Is}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{correct?}\hfill \\ \hfill & \hfill 27-30& =\hfill & -3\hfill & \text{Is}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{correct?}\hfill \\ \hfill & \hfill -3& =\hfill & -3\hfill & \text{Yes,}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{correct}\text{.}\hfill \end{array}$

## Practice set b

Solve and check each equation.

$16x-3-15x=8$ for $x.$

$x=11$

$4\left(y-5\right)-3y=-1$ for $y.$

$y=19$

$-2\left({a}^{2}+3a-1\right)+2{a}^{2}+7a=0$ for $a.$

$a=-2$

$5m\left(m-2a-1\right)-5{m}^{2}+2a\left(5m+3\right)=10$ for $a.$

$a=\frac{10+5m}{6}$

Often the variable we wish to solve for will appear on both sides of the equal sign. We can isolate the variable on either the left or right side of the equation by using the techniques of Sections [link] and [link] .

## Sample set c

Solve $6x-4=2x+8$ for $x.$

$\begin{array}{llll}\hfill 6x-4& =\hfill & 2x+8\hfill & \text{To}\text{\hspace{0.17em}}\text{isolate}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\text{on}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{left}\text{\hspace{0.17em}}\text{side,}\text{\hspace{0.17em}}\text{subtract}\text{\hspace{0.17em}}2m\text{\hspace{0.17em}}\text{from}\text{\hspace{0.17em}}\text{both}\text{\hspace{0.17em}}\text{sides}.\hfill \\ \hfill 6x-4-2x& =\hfill & 2x+8-2x\hfill & \hfill \\ \hfill 4x-4& =\hfill & 8\hfill & \text{Add}\text{\hspace{0.17em}}4\text{\hspace{0.17em}}\text{to}\text{\hspace{0.17em}}\text{both}\text{\hspace{0.17em}}\text{sides}.\hfill \\ \hfill 4x-4+4& =\hfill & 8+4\hfill & \hfill \\ \hfill 4x& =& 12\hfill & \text{Divide}\text{\hspace{0.17em}}\text{both}\text{\hspace{0.17em}}\text{sides}\text{\hspace{0.17em}}\text{by}\text{\hspace{0.17em}}4.\hfill \\ \hfill \frac{4x}{4}& =\hfill & \frac{12}{4}\hfill & \\ \hfill x& =\hfill & 3\hfill & \end{array}$

$\begin{array}{lllll}Check:\hfill & \hfill 6\left(3\right)-4& =\hfill & 2\left(3\right)+8\hfill & \text{Is}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{correct?}\hfill \\ \hfill & \hfill 18-4& =\hfill & 6+8\hfill & \text{Is}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{correct?}\hfill \\ \hfill & \hfill 14& =\hfill & 14\hfill & \text{Yes,}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{correct}\text{.}\hfill \end{array}$

Solve $6\left(1-3x\right)+1=2x-\left[3\left(x-7\right)-20\right]$ for $x.$

$\begin{array}{llll}\hfill 6-18x+1& =\hfill & 2x-\left[3x-21-20\right]\hfill & \hfill \\ \hfill -18x+7& =\hfill & 2x-\left[3x-41\right]\hfill & \\ \hfill -18x+7& =\hfill & 2x-3x+41\hfill & \\ \hfill -18x+7& =\hfill & -x+41\hfill & \text{To}\text{\hspace{0.17em}}\text{isolate}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\text{on}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{right}\text{\hspace{0.17em}}\text{side,}\text{\hspace{0.17em}}\text{add}\text{\hspace{0.17em}}18x\text{\hspace{0.17em}}\text{to}\text{\hspace{0.17em}}\text{both}\text{\hspace{0.17em}}\text{sides}.\hfill \\ \hfill -18x+7+18x& =\hfill & -x+41+18x\hfill & \hfill \\ \hfill 7& =\hfill & 17x+41\hfill & \text{Subtract}\text{\hspace{0.17em}}41\text{\hspace{0.17em}}\text{from}\text{\hspace{0.17em}}\text{both}\text{\hspace{0.17em}}\text{sides}.\hfill \\ \hfill 7-41& =\hfill & 17x+41-41\hfill & \hfill \\ \hfill -34& =\hfill & 17x\hfill & \text{Divide}\text{\hspace{0.17em}}\text{both}\text{\hspace{0.17em}}\text{sides}\text{\hspace{0.17em}}\text{by}\text{\hspace{0.17em}}17.\hfill \\ \hfill \frac{-34}{17}& =\hfill & \frac{17x}{17}\hfill & \\ \hfill -2& =\hfill & x\hfill & \text{Since}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{equation}\text{\hspace{0.17em}}-2=x\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{equivalent}\text{\hspace{0.17em}}\text{to}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{equation}\hfill \\ \hfill & \hfill & \hfill & x=-2,\text{\hspace{0.17em}}\text{we}\text{\hspace{0.17em}}\text{can}\text{\hspace{0.17em}}\text{write}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{answer}\text{\hspace{0.17em}}\text{as}\text{\hspace{0.17em}}x=-2.\hfill \\ \hfill x& =\hfill & -2\hfill & \end{array}$

$\begin{array}{lllll}Check:\hfill & \hfill 6\left(1-3\left(-2\right)\right)+1& =\hfill & 2\left(-2\right)-\left[3\left(-2-7\right)-20\right]\hfill & \text{Is}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{correct?}\hfill \\ \hfill & \hfill 6\left(1+6\right)+1& =\hfill & -4-\left[3\left(-9\right)-20\right]\hfill & \text{Is}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{correct?}\hfill \\ \hfill & \hfill 6\left(7\right)+1& =\hfill & -4-\left[-27-20\right]\hfill & \text{Is}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{correct?}\hfill \\ \hfill & \hfill 42+1& =\hfill & -4-\left[-47\right]\hfill & \text{Is}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{correct?}\hfill \\ \hfill & \hfill 43& =\hfill & -4+47\hfill & \text{Is}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{correct?}\hfill \\ \hfill & \hfill 43& =\hfill & 43\hfill & \text{Yes,}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{correct}\text{.}\hfill \end{array}$

## Practice set c

Solve $8a+5=3a-5$ for $a.$

$a=-2$

Solve $9y+3\left(y+6\right)=15y+21$ for $y.$

$y=-1$

Solve $3k+2\left[4\left(k-1\right)+3\right]=63-2k$ for $k.$

$k=5$

As we noted in Section [link] , some equations are identities and some are contradictions. As the problems of Sample Set D will suggest,

## Recognizing an identity

1. If, when solving an equation, all the variables are eliminated and a true statement results, the equation is an identity.

1. If, when solving an equation, all the variables are eliminated and a false statement results, the equation is a contradiction.

## Sample set d

Solve $9x+3\left(4-3x\right)=12$ for $x.$

$\begin{array}{lll}\hfill 9x+12-9x& =\hfill & 12\hfill \\ \hfill 12& =\hfill & 12\hfill \end{array}$

The variable has been eliminated and the result is a true statement. The original equation is an identity.

Solve $-2\left(10-2y\right)-4y+1=-18$ for $y.$

$\begin{array}{lll}\hfill -20+4y-4y+1& =\hfill & -18\hfill \\ \hfill -19& =\hfill & -18\hfill \end{array}$

The variable has been eliminated and the result is a false statement. The original equation is a contradiction.

## Practice set d

Classify each equation as an identity or a contradiction.

$6x+3\left(1-2x\right)=3$

identity, $3=3$

$-8m+4\left(2m-7\right)=28$

contradiction, $-28=28$

$3\left(2x-4\right)-2\left(3x+1\right)+14=0$

identity, $0=0$

$-5\left(x+6\right)+8=3\left[4-\left(x+2\right)\right]-2x$

contradiction, $-22=6$

## Exercises

For the following problems, solve each conditional equation. If the equation is not conditional, identify it as an identity or a contradiction.

$3x+1=16$

$x=5$

$6y-4=20$

$4a-1=27$

$a=7$

$3x+4=40$

$2y+7=-3$

$y=-5$

$8k-7=-23$

$5x+6=-9$

$x=-3$

$7a+2=-26$

$10y-3=-23$

$y=-2$

$14x+1=-55$

$\frac{x}{9}+2=6$

$x=36$

$\frac{m}{7}-8=-11$

$\frac{y}{4}+6=12$

$y=24$

$\frac{x}{8}-2=5$

$\frac{m}{11}-15=-19$

$m=-44$

$\frac{k}{15}+20=10$

$6+\frac{k}{5}=5$

$k=-5$

$1-\frac{n}{2}=6$

$\frac{7x}{4}+6=-8$

$x=-8$

$\frac{-6m}{5}+11=-13$

$\frac{3k}{14}+25=22$

$k=-14$

$3\left(x-6\right)+5=-25$

$16\left(y-1\right)+11=-85$

$y=-5$

$6x+14=5x-12$

$23y-19=22y+1$

$y=20$

$-3m+1=3m-5$

$8k+7=2k+1$

$k=-1$

$12n+5=5n-16$

$2\left(x-7\right)=2x+5$

$-4\left(5y+3\right)+5\left(1+4y\right)=0$

$3x+7=-3-\left(x+2\right)$

$x=-3$

$4\left(4y+2\right)=3y+2\left[1-3\left(1-2y\right)\right]$

$5\left(3x-8\right)+11=2-2x+3\left(x-4\right)$

$x=\frac{19}{14}$

$12-\left(m-2\right)=2m+3m-2m+3\left(5-3m\right)$

$-4\cdot k-\left(-4-3k\right)=-3k-2k-\left(3-6k\right)+1$

$k=3$

$3\left[4-2\left(y+2\right)\right]=2y-4\left[1+2\left(1+y\right)\right]$

$-5\left[2m-\left(3m-1\right)\right]=4m-3m+2\left(5-2m\right)+1$

$m=2$

For the following problems, solve the literal equations for the indicated variable. When directed, find the value of that variable for the given values of the other variables.

Solve $I=\frac{E}{R}$ for $R.$ Find the value of $R$ when $I=0.005$ and $E=0.0035.$

Solve $P=R-C$ for $R.$ Find the value of $R$ when $P=27$ and $C=85.$

$R=112$

Solve $z=\frac{x-\overline{x}}{s}$ for $x.$ Find the value of $x$ when $z=1.96,$ $s=2.5,$ and $\overline{x}=15.$

Solve $F=\frac{{S}_{x}^{2}}{{S}_{y}^{2}}$ for ${S}_{x}^{2}\cdot {S}_{x}^{2}$ represents a single quantity. Find the value of ${S}_{x}^{2}$ when $F=2.21$ and ${S}_{y}^{2}=3.24.$

${S}_{x}{}^{2}=F·{S}_{y}{}^{2};\text{\hspace{0.17em}}{S}_{x}{}^{2}=7.1604$

Solve $p=\frac{nRT}{V}$ for $R.$

Solve $x=4y+7$ for $y.$

$y=\frac{x-7}{4}$

Solve $y=10x+16$ for $x.$

Solve $2x+5y=12$ for $y.$

$y=\frac{-2x+12}{5}$

Solve $-9x+3y+15=0$ for $y.$

Solve $m=\frac{2n-h}{5}$ for $n.$

$n=\frac{5m+h}{2}$

Solve $t=\frac{Q+6P}{8}$ for $P.$

Solve $=\frac{\square \text{\hspace{0.17em}}+9j}{\Delta }$ for $j$ .

Solve for .

## Exercises for review

( [link] ) Simplify ${\left(x+3\right)}^{2}{\left(x-2\right)}^{3}{\left(x-2\right)}^{4}\left(x+3\right).$

${\left(x+3\right)}^{3}{\left(x-2\right)}^{7}$

( [link] ) Find the product. $\left(x-7\right)\left(x+7\right).$

( [link] ) Find the product. ${\left(2x-1\right)}^{2}.$

$4{x}^{2}-4x+1$

( [link] ) Solve the equation $y-2=-2.$

( [link] ) Solve the equation $\frac{4x}{5}=-3.$

$x=\frac{-15}{4}$

What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
While the American heart association suggests that meditation might be used in conjunction with more traditional treatments as a way to manage hypertension
in a comparison of the stages of meiosis to the stage of mitosis, which stages are unique to meiosis and which stages have the same event in botg meiosis and mitosis
Please keep in mind that it's not allowed to promote any social groups (whatsapp, facebook, etc...), exchange phone numbers, email addresses or ask for personal information on QuizOver's platform.