<< Chapter < Page Chapter >> Page >
This module describes the circular convolution algorithm and an alternative algorithm

Introduction

This module relates circular convolution of periodic signals in one domain to multiplication in the other domain.

You should be familiar with Discrete-Time Convolution , which tells us that given two discrete-time signals x n , the system's input, and h n , the system's response, we define the output of the system as

y n x n h n k x k h n k
When we are given two DFTs (finite-length sequences usually oflength N ), we cannot just multiply them together as we do in the above convolutionformula, often referred to as linear convolution . Because the DFTs are periodic, they have nonzero values for n N and thus the multiplication of these two DFTs will be nonzero for n N . We need to define a new type of convolution operation that will result in our convolved signal being zerooutside of the range n 0 1 N 1 . This idea led to the development of circular convolution , also called cyclic or periodic convolution.

Signal circular convolution

Given a signal f n with Fourier coefficients c k and a signal g n with Fourier coefficients d k , we can define a new signal, v n , where v n f n g n We find that the Fourier Series representation of v n , a k , is such that a k c k d k . f n g n is the circular convolution of two periodic signals and is equivalent to the convolution over one interval, i.e. f n g n n 0 N η 0 N f η g n η .

Circular convolution in the time domain is equivalent to multiplication of the Fourier coefficients.
This is proved as follows
a k 1 N n 0 N v n j ω 0 k n 1 N 2 n 0 N η 0 N f η g n η ω j 0 k n 1 N η 0 N f η 1 N n 0 N g n η j ω 0 k n ν ν n η 1 N η 0 N f η 1 N ν η N η g ν j ω 0 ν η 1 N η 0 N f η 1 N ν η N η g ν j ω 0 k ν j ω 0 k η 1 N η 0 N f η d k j ω 0 k η d k 1 N η 0 N f η j ω 0 k η c k d k

Circular convolution formula

What happens when we multiply two DFT's together, where Y k is the DFT of y n ?

Y k F k H k
when 0 k N 1

Using the DFT synthesis formula for y n

y n 1 N k 0 N 1 F k H k j 2 N k n

And then applying the analysis formula F k m 0 N 1 f m j 2 N k n

y n 1 N k 0 N 1 m 0 N 1 f m j 2 N k n H k j 2 N k n m 0 N 1 f m 1 N k 0 N 1 H k j 2 N k n m
where we can reduce the second summation found in the above equation into h ( ( n m ) ) N 1 N k 0 N 1 H k j 2 N k n m y n m 0 N 1 f m h ( ( n m ) ) N which equals circular convolution! When we have 0 n N 1 in the above, then we get:
y n f n h n
The notation represents cyclic convolution "mod N".

Alternative convolution formula

    Alternative circular convolution algorithm

  • Step 1: Calculate the DFT of f n which yields F k and calculate the DFT of h n which yields H k .
  • Step 2: Pointwise multiply Y k F k H k
  • Step 3: Inverse DFT Y k which yields y n

Seems like a roundabout way of doing things, but it turns out that there are extremely fast ways to calculate the DFT of a sequence.

To circularily convolve 2 N -point sequences: y n m 0 N 1 f m h ( ( n m ) ) N For each n : N multiples, N 1 additions

N points implies N 2 multiplications, N N 1 additions implies O N 2 complexity.

Steps for circular convolution

We can picture periodic sequences as having discrete points on a circle as the domain

Shifting by m , f n m , corresponds to rotating the cylinder m notches ACW (counter clockwise). For m -2 , we get a shift equal to that in the following illustration:

for m -2

To cyclic shift we follow these steps:

1) Write f n on a cylinder, ACW

N 8

2) To cyclic shift by m , spin cylinder m spots ACW f n f (( n + m )) N

m -3

Notes on circular shifting

f (( n + N )) N f n Spinning N spots is the same as spinning all the way around, or not spinning at all.

f (( n + N )) N f (( n - ( N - m ) )) N Shifting ACW m is equivalent to shifting CW N m

f (( - n )) N The above expression, simply writes the values of f n clockwise.

f n
f (( - n )) N

Convolve (n = 4)

Two discrete-time signals to be convolved.

  • h ( ( m ) ) N

Multiply f m and sum to yield: y 0 3

  • h ( ( 1 m ) ) N

Multiply f m and sum to yield: y 1 5

  • h ( ( 2 m ) ) N

Multiply f m and sum to yield: y 2 3

  • h ( ( 3 m ) ) N

Multiply f m and sum to yield: y 3 1

Got questions? Get instant answers now!

Exercise

Take a look at a square pulse with a period of T.

For this signal c k 1 N k 0 1 2 2 k 2 k

Take a look at a triangle pulse train with a period of T.

This signal is created by circularly convolving the square pulse with itself. The Fourier coefficients for this signal are a k c k 2 1 4 2 k 2 2 k 2

Find the Fourier coefficients of the signal that is created when the square pulse and the triangle pulse are convolved.

a k = undefined k = 0 1 8 s i n 3 [ π 2 k ] [ π 2 k ] 3 otherwise

Got questions? Get instant answers now!

Circular shifts and the dft

Circular shifts and dft

If f n DFT F k then f (( n - m )) N DFT 2 N k m F k ( i.e. circular shift in time domain = phase shift in DFT)

f n 1 N k 0 N 1 F k 2 N k n
so phase shifting the DFT
f n 1 N k 0 N 1 F k 2 N k n 2 N k n 1 N k 0 N 1 F k 2 N k n m f (( n - m )) N

Circular convolution demonstration

circularshiftsDemo
Interact (when online) with a Mathematica CDF demonstrating Circular Shifts.

Conclusion

Circular convolution in the time domain is equivalent to multiplication of the Fourier coefficients in the frequency domain.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask